
Citation: Maria Kristina Parr, Anna Müller-Schöll. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy[J]. AIMS Molecular Science, 2018, 5(2): 131-159. doi: 10.3934/molsci.2018.2.131
[1] | Menita Carozza, Luca Esposito, Lorenzo Lamberti . Quasiconvex bulk and surface energies with subquadratic growth. Mathematics in Engineering, 2025, 7(3): 228-263. doi: 10.3934/mine.2025011 |
[2] | Chao Xia, Jiabin Yin . Two overdetermined problems for anisotropic $ p $-Laplacian. Mathematics in Engineering, 2022, 4(2): 1-18. doi: 10.3934/mine.2022015 |
[3] | Joan Mateu, Maria Giovanna Mora, Luca Rondi, Lucia Scardia, Joan Verdera . A maximum-principle approach to the minimisation of a nonlocal dislocation energy. Mathematics in Engineering, 2020, 2(2): 253-263. doi: 10.3934/mine.2020012 |
[4] | Bruno Bianchini, Giulio Colombo, Marco Magliaro, Luciano Mari, Patrizia Pucci, Marco Rigoli . Recent rigidity results for graphs with prescribed mean curvature. Mathematics in Engineering, 2021, 3(5): 1-48. doi: 10.3934/mine.2021039 |
[5] | Chiara Gavioli, Pavel Krejčí . Deformable porous media with degenerate hysteresis in gravity field. Mathematics in Engineering, 2025, 7(1): 35-60. doi: 10.3934/mine.2025003 |
[6] | YanYan Li . Symmetry of hypersurfaces and the Hopf Lemma. Mathematics in Engineering, 2023, 5(5): 1-9. doi: 10.3934/mine.2023084 |
[7] | Antonio De Rosa, Luca Lussardi . On the anisotropic Kirchhoff-Plateau problem. Mathematics in Engineering, 2022, 4(2): 1-13. doi: 10.3934/mine.2022011 |
[8] | Stefano Berrone, Stefano Scialò, Gioana Teora . The mixed virtual element discretization for highly-anisotropic problems: the role of the boundary degrees of freedom. Mathematics in Engineering, 2023, 5(6): 1-32. doi: 10.3934/mine.2023099 |
[9] | Giacomo Canevari, Arghir Zarnescu . Polydispersity and surface energy strength in nematic colloids. Mathematics in Engineering, 2020, 2(2): 290-312. doi: 10.3934/mine.2020015 |
[10] | Barbara Brandolini, Florica C. Cîrstea . Anisotropic elliptic equations with gradient-dependent lower order terms and $ L^1 $ data. Mathematics in Engineering, 2023, 5(4): 1-33. doi: 10.3934/mine.2023073 |
We prove an existence and uniqueness result of stable equilibrium hypersurfaces in wedge-like domains in the $ (n+1) $-dimensional Euclidean space $ {\mathbb R}^{n+1} $ for anisotropic surface energy, which serve as a mathematical model of small crystals and small liquid crystals with anisotropy. Our result is new even when the special case where the surface energy is merely the surface area.
Let $ \gamma:S^n \rightarrow {\mathbb R}_{ > 0} $ be a positive continuous function on the unit sphere $ S^n = \{\nu \in {\mathbb R}^{n+1} \; ; \; \|\nu\| = 1\} $ in $ {\mathbb R}^{n+1} $. Let $ X $ be a closed piecewise-smooth hypersurface in $ {\mathbb R}^{n+1} $. $ X $ will be represented as a mapping $ X:M\to {\mathbb R}^{n+1} $ from an $ n $-dimensional oriented connected compact $ C^\infty $ manifold $ M $ into $ {\mathbb R}^{n+1} $. Let $ \nu $ be the unit normal vector field along $ X|_{M\setminus S[X]} $, where $ S[X] $ is the set of singular points of $ X $. The anisotropic energy $ {\mathcal F}_\gamma(X) $ of $ X $ is defined as $ {\mathcal F}_\gamma(X): = \int_{M\setminus S[X]} \gamma(\nu)\:dA $, where $ dA $ is the $ n $-dimensional volume form of $ M $ induced by $ X $. Such an energy was introduced by Gibbs (1839–1903) in order to model the shape of small crystals, and it is used as a mathematical model of anisotropic surface energy [19,20]. It is known that, for any positive number $ V > 0 $, among all closed piecewise-smooth hypersurfaces as above enclosing the same $ (n+1) $-dimensional volume $ V $, there exists a unique (up to translation in $ {\mathbb R}^{n+1} $) minimizer $ W_\gamma(V) $ of $ {\mathcal F}_\gamma $ [17]. Each $ W_\gamma(V) $ is homothetic to the so-called Wulff shape for $ \gamma $ (the definition of the Wulff shape will be given in §2), which we will denote by $ W_\gamma $. When $ \gamma\equiv 1 $, $ {\mathcal F}_\gamma(X) $ is the usual $ n $-dimensional volume of the hypersurface $ X $ and $ W_\gamma $ is the unit sphere $ S^n $.
The Wulff shape $ W_\gamma $ is not smooth in general. However, in this paper we assume that $ W_\gamma $ is a smooth strictly convex hypersurface like the previous works that studied variational problems of anisotropic surface energies in differential geometry (cf. [1,4,5,8,9,10,11,12,14,15]).
Each equilibrium hypersurface $ X $ of $ {\mathcal F}_\gamma $ for variations that preserve the enclosed $ (n+1) $-dimensional volume (we will call such a variation a volume-preserving variation) has constant anisotropic mean curvature. Here, the anisotropic mean curvature $ \Lambda $ of a piecewise-$ C^2 $ hypersurface $ X $ is defined at each regular point of $ X $ as (cf. [8,15]) $ \Lambda: = (1/n) \large(-{\rm div}_M D\gamma+nH\gamma\large) $, where $ D\gamma $ is the gradient of $ \gamma $ and $ H $ is the mean curvature of $ X $. If $ \gamma\equiv 1 $, $ \Lambda = H $ holds.
Let $ \Omega $ be a wedge-shaped domain in $ {\mathbb R}^{n+1} $ bounded by $ k $ hyperplanes $ \Pi_1, \cdots, \Pi_k $ ($ k \le n+1 $) such that the intersection $ \Pi_1 \cap \cdots \cap \Pi_k $ includes the origin $ 0 $ of $ {\mathbb R}^{n+1} $ (Figure 1). Denote by $ \tilde{N}_j $ the unit normal to $ \Pi_j $ which points outward from $ \Omega $. We assume that $ \tilde{N}_1, \cdots, \tilde{N}_k $ are linearly independent. We call each $ \Pi_i \cap \Pi_j $ ($ i \ne j $) an edge of $ \Omega $. Let $ \omega_j $ ($ j = 1, \cdots, k $) be non-negative constants. Let $ M $ be an $ n $-dimensional oriented connected compact $ C^\infty $ manifold with boundary $ \partial M = \sigma_1\cup \cdots \cup \sigma_k $, where each $ \sigma_j $ is topologically $ S^{n-1} $. Consider any $ C^\infty $-immersion $ X:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ of which the restriction $ X|_{\partial M} $ to $ \partial M $ is an embedding. Set $ C_j = X(\sigma_j) $, and let $ D_j = D_j(X)\subset\Pi_j $ be the $ n $-dimensional domain bounded by $ C_j $ ($ j = 1, \cdots, k $). We assume that the unit normal $ \nu $ to $ X $ points outward from the $ (n+1) $-dimensional domain bounded by $ X(M)\cup (\cup_{j = 1}^k D_j) $ near each $ C_j $. We define the wetting energy $ {\mathcal W}(X) $ of $ X $ as
$ W(X)=k∑j=1ωjHn(Dj), $
|
where $ \mathcal{H}^n(D_j) $ is the $ n $-dimensional Hausdorff measure of $ D_j $. Then, we define the total energy $ E(X) = E_\gamma(X) $ of $ X $ by
$ E(X)=Fγ(X)+W(X). $
|
Note that $ X(M)\cup D_1\cup \cdots \cup D_k $ is an oriented closed piecewise smooth hypersurface without boundary (possibly with self-intersection). We denote by $ V(X) $ the oriented volume enclosed by $ X(M)\cup D_1\cup \cdots \cup D_k $ which is represented as
$ V(X) = \frac{1}{n+1}\int_M\langle X, \nu\rangle \;dA. $ |
We call a critical point of $ E $ for volume-preserving variations an anisotropic capillary hypersurface (or, simply, a capillary hypersurface). A capillary hypersurface is said to be stable if the second variation of $ E $ is nonnegative for all volume-preserving variations of $ X $. Otherwise, it is said to be unstable. In this paper, we prove the following two results on the uniqueness and the existence of stable capillary hypersurfaces.
Theorem 1. Let $ X:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ be a compact oriented immersed anisotropic capillary hypersurface that is disjoint from any edge of $ \Omega $, having embedded boundary and satisfying $ X(\partial M)\cap\Pi_j = \partial D_j $ for a nonempty bounded domain $ D_j $ in $ \Pi_j $. If $ X $ is stable (and all $ D_1, \cdots, D_k $ are convex if $ n\ge 3 $), then $ X(M) $ is (up to translation and homothety) a part of the Wulff shape $ W_\gamma $. Conversely, if $ X $ is an embedding onto a part of $ W_\gamma $ (up to translation and homothety), then it is stable.
Theorem 2. There exists an anisotropic capillary hypersurface $ X $ that is a part of the Wulff shape (up to translation and homothety) and that intersects $ \Pi_j $ with more than two points if and only if $ \omega_j < \gamma(\tilde{N}_j) $ holds.
As for previous works which are closely related to Theorem 1, we have the followings. First, Theorem 1 is a generalization of the main result of [3], where we proved the uniqueness result similar to Theorem 1 for isotropic capillary hypersurfaces in a wedge in $ {\mathbb R}^{n+1} $ with $ k = 2 $; here, isotropic means that $ \gamma\equiv 1 $. [13] also studies the isotropic case for general $ k $, but it does not prove that parts of the Wulff shape are stable. As for the anisotropic case, we studied the existence and uniqueness of stable anisotropic capillary surfaces between two parallel planes $ \Pi_1 $ and $ \Pi_2 $ in $ {\mathbb R}^3 $ [9,10,11]. There, stable anisotropic capillary surfaces are not necessarily parts of the Wulff shape (up to translation and homothety). This suggests that the assumption of the linear independence of $ \tilde{N}_1, \cdots, \tilde{N}_k $ cannot be removed in our Theorem 1. Finally we mention that Theorem 1 was announced in [7]. Moreover there an outline of the proof of Theorem 1 for $ n = 2 $ and $ k = 2 $ was given.
This article is organized as follows. In Section 2 we give preliminary contents. We give the definition and a representation of the Wulff shape. We also give the definitions of various anisotropic curvatures for hypersurfaces. Moreover we recall the definition of anisotropic parallel hypersurfaces and a Steiner-type integral formula for these hypersurfaces. In Section 3, we give the first variation formulas and the Euler–Lagrange equations for our variational problems. Also the proof of Theorem 2 is given. Sections 4, 6 and 7 will be devoted to proving the uniqueness part of Theorem 1. The existence part that is the last statement of Theorem 1 will be proved in Section 5.
In this paper, we call the boundary $ W_\gamma $ of the convex set $ \tilde{W}[\gamma] : = \cap _{\nu \in S^n} \bigl\{ X \in {\mathbb R}^{n+1}\; ;\; \langle X, \nu\rangle \le \gamma(\nu) \bigr\} $ the Wulff shape for $ \gamma $, where $ \langle \, \ \rangle $ means the standard inner product in $ {\mathbb R}^{n+1} $. In other literatures, $ \tilde{W}[\gamma] $ is often called the Wulff shape.
From now on, any parallel translation of the Wulff shape $ W_\gamma $ will be also called the Wulff shape, and it will be denoted also by $ W_\gamma $, if it does not cause any confusion.
From now on, we assume that, for simplicity, $ \gamma $ is of class $ C^\infty $. We also assume that the homogeneous extension $ \overline{\gamma}:{\mathbb R}^{n+1} \to {\mathbb R}_{\ge 0} $ of $ \gamma $ that is defined as $ \overline{\gamma}(rX) : = r\gamma(X) $ $ (\forall X \in S^n, \ \forall r \ge 0) $ is a strictly convex function. In this case, we say that $ \gamma $ is strictly convex, which is equivalent to the $ n\times n $ matrix $ D^2\gamma+\gamma\cdot I_n $ is positive definite at any point in $ S^n $. Here, $ D^2\gamma $ is the Hessian of $ \gamma $ on $ S^n $ and $ I_n $ is the identity matrix of size $ n $. The Wulff shape $ W_\gamma $ is smooth and strictly convex (that is, each principal curvature of $ W_\gamma $ with respect to the inward-pointing normal is positive at each point of $ W_\gamma $) if and only if $ \gamma $ is of class $ C^2 $ and strictly convex.
The Cahn–Hoffman map $ \xi_\gamma:S^n \to {\mathbb R}^{n+1} $ for $ \gamma $ is defined as $ \xi_\gamma(\nu) = D\gamma|_\nu+\gamma(\nu)\nu $, ($ \nu \in S^n $). Here, the tangent space $ T_\nu(S^n) $ of $ S^n $ at $ \nu $ is naturally identified with the hyperplane in $ {\mathbb R}^{n+1} $ which is tangent to $ S^n $ at $ \nu $. Because $ \gamma $ is strictly convex, $ \xi_\gamma $ gives an embedding onto $ W_\gamma $. Moreover, the outward-pointing unit normal at a point $ \xi_\gamma(\nu) $ to $ W_\gamma $ coincides with $ \nu $ (cf. [8]).
The Cahn-Hoffman field $ \tilde{\xi} $ along $ X $ for $ \gamma $ is defined as $ \tilde{\xi}: = \xi_\gamma\circ \nu:M\to {\mathbb R}^{n+1} $. Since the unit normal $ \nu(p) $ of $ X $ at $ p \in M $ coincides with the unit normal of $ \xi_\gamma $ at the point $ \nu(p) $, we can identify $ T_pM $ with $ T_{\tilde{\xi}(p)}\xi_\gamma(S^n) $.
The linear map $ S^\gamma_p:T_p M \to T_p M $ ($ p \in M $) given by the $ n\times n $ matrix $ S^\gamma: = -d\tilde{\xi} $ is called the anisotropic shape operator of $ X $. Various anisotropic curvatures of $ X $ are defined as follows.
Definition 1 (anisotropic curvatures; cf. [5,15]). $ \rm (i)$ The eigenvalues of $ S^\gamma $ are called the anisotropic principal curvatures of $ X $. We denote them by $ k^\gamma_1, \cdots, k^\gamma_n $.
(ii) Let $ \sigma^\gamma_r $ be the elementary symmetric functions of $ k^\gamma_1, \cdots, k^\gamma_n $:
$ σγr:=∑1≤l1<⋯<lr≤nkγl1⋯kγlr,r=1,⋯,n. $
|
(2.1) |
Set $ \sigma^\gamma_0: = 1 $. $ H^\gamma_r: = \sigma^\gamma_r/{}_nC_r $ is called the $ r $th anisotropic mean curvature of $ X $, where $ _nC_r = \frac{n!}{k!(n-k)!} $.
(iii) $ H^\gamma_1 $ is called also the anisotropic mean curvature of $ X $, and we often denote it by $ \Lambda $; that is, $ \Lambda = \frac{1}{n}\sum\limits_{i = 1}^n k^\gamma_i = -\frac{1}{n}{\rm trace}_M(d\tilde\xi) $. $
As we mentioned above, for the Cahn-Hoffman map $ \xi_\gamma:S^n \to {\mathbb R}^{n+1} $, it is shown that the unit normal vector field $ \nu_{\xi_\gamma} $ is given by $ \xi_\gamma^{-1} $. Hence, the anisotropic shape operator of $ \xi_\gamma $ is $ S^\gamma = -d(\xi_\gamma\circ \nu_{\xi_\gamma}) = -d({\rm id}_{S^n}) = -I_n $. Therefore, the anisotropic principal curvatures of $ \xi_\gamma $ are $ -1 $, and hence, each $ r $th anisotropic mean curvature of $ \xi_\gamma $ is $ (-1)^r $. Particularly, the anisotropic mean curvature of $ \xi_\gamma $ for the normal $ \nu $ and that of $ W_\gamma $ for the outward-pointing unit normal is $ -1 $ at any point. More generally, the anisotropic mean curvature of an immersion $ X:M\to {\mathbb R}^{n+1} $ is the mean value of the ratios of the principal curvatures of the Wulff shape and the corresponding curvatures of $ X $ which is explained as follows.
Remark 1 (cf. [8]). Let $ X:M\to {\mathbb R}^{n+1} $ be an immersion. Take any point $ p \in M $. We compute the anisotropic mean curvature $ \Lambda(p) $ of $ X $ at $ p $. Let $ \{e_1, \cdots, e_n\} $ be a locally defined frame on $ S^{n} $ such that $ (D^2\gamma+\gamma\cdot I_n)e_i = (1/\mu_i)e_i $, where $ \mu_i $ are the principal curvatures of $ \xi_\gamma $ with respect to $ \nu $. Note that the basis $ \{e_1, \cdots, e_n\} $ at $ \nu(p) $ also serves as an orthogonal basis for the tangent hyperplane of $ X $ at $ p $. Let $ (-w_{ij}) $ be the matrix representing $ d\nu $ with respect to this basis. Then
$ -S^\gamma = d\xi_\gamma\circ d\nu = (D^2\gamma+\gamma\cdot I_n)d\nu = \left(−w11/μ1⋯−w1n/μ1 ⋅ ⋯ ⋅ ⋅ ⋯ ⋅ ⋅ ⋯ ⋅−wn1/μn⋯−wnn/μn \right). $
|
This with the definition of $ \Lambda $ gives
$ Λ=−1ntraceM(d˜ξ)=(1/n)(w11/μ1+⋯+wnn/μn). $
|
(2.2) |
$ S^\gamma $ is not symmetric in general. However, we have the following good properties of the anisotropic curvatures.
Remark 2. $ \rm (i)$ If $ d\xi_\gamma = D^2 \gamma+\gamma \cdot I_n $ is positive definite at a point $ \nu(p) $ ($ p \in M $), then all of the anisotropic principal curvatures of $ X $ at $ p $ are real [4].
(ii) $ k^\gamma_i $ is not a real value in general. However, each $ H^\gamma_r $ is always a real valued function on $ M $ [6].
At the end of this section, we recall a useful concept that is "anisotropic parallel hypersurface" and an important integral formula that is a generalization of the classical Steiner's formula. Anisotropic parallel hypersurface is a generalization of parallel hypersurface and is defined as follows.
Definition 2 (Anisotropic parallel hypersurface, cf. [15]). Let $ X:M \to {\mathbb R}^{n+1} $ be an immersion. For any real number $ t $, we call the map $ X_t: = X+t\tilde{\xi}:M \to {\mathbb R}^{n+1} $ the anisotropic parallel deformation of $ X $ of height $ t $. If $ X_t $ is an immersion, then we call it the anisotropic parallel hypersurface of $ X $ of height $ t $.
The anisotropic energy $ {\mathcal F}_\gamma(X_t) $ of the anisotropic parallel hypersurface $ X_t: = X+t\tilde{\xi} $ is a polynomial of $ t $ with degree at the most $ n $ as follows.
Fact 1 (Steiner-type formula [4]). Assume that $ \gamma:S^n \to {\mathbb R}_{ > 0} $ is of class $ C^\infty $. Let $ X:M\rightarrow {\mathbb R}^{n+1} $ be an immersion. Consider anisotropic parallel hypersurfaces $ X_t = X+t\tilde{\xi}:M \to {\mathbb R}^{n+1} $. Then, the $ n $-dimensional volume form $ dA_{X_t} $ and the anisotropic energy $ {\mathcal F}_\gamma(X_t) $ of $ X_t $ have the following representations.
$ dAXt=(1−tkγ1)⋯(1−tkγn)dA=n∑r=0(−1)rtr(nCr)HγrdA, $
|
(2.3) |
$ Fγ(Xt)=∫Mγ(ν)n∑r=0(−1)rtr(nCr)HγrdA. $
|
(2.4) |
The isotropic version of Fact 1 is known as the Weyl's tube formula [18]. The isotropic $ 2 $-dimensional version is the well-known Steiner's formula.
In order to obtain the Euler–Lagrange equations for our capillary problem, first we recall the first variation formula for the anisotropic surface energy $ {\mathcal F}_\gamma $.
Proposition 1 ([6]). Let $ X_\epsilon:M\to {\mathbb R}^{n+1} $ ($ \epsilon \in J: = (-\epsilon_0, \epsilon_0) $), be a smooth variation of $ X $; that is, $ \epsilon_0 > 0 $ and $ X_0 = X $. Set
$ \delta X : = \frac{\partial X_\epsilon}{\partial \epsilon}\Big|_{\epsilon = 0}, \quad \psi: = \big\langle \delta X, \nu\big\rangle. $ |
Then, the first variation of the anisotropic energy $ \mathcal F_\gamma $ is given as follows.
$ δFγ:=dFγ(Xϵ)dϵ|ϵ=0=−∫MnΛψdA−∮∂M⟨δX,R(p(˜ξ))⟩ds, $
|
(3.1) |
where $ ds $ is the $ (n-1) $-dimensional volume form of $ \partial M $ induced by $ X $, $ N $ is the outward-pointing unit conormal along $ \partial M $, $ R $ is the $ \pi/2 $-rotation on the $ (N, \nu) $-plane, and $ p $ is the projection from $ {\mathbb R}^{n+1} $ to the $ (N, \nu) $-plane.
On the other hand, the first variation of the $ (n+1) $-dimensional volume enclosed by the region between $ X $ and $ X_\epsilon $ is given by ([2]) as
$ δV=∫M⟨δX,ν⟩dA. $
|
(3.2) |
Similarly, the first variation of $ \mathcal{H}^n(D_j) $ is given as follows.
$ δHn(Dj)=∫σj⟨δX,ρ⟩ds, $
|
(3.3) |
where $ \rho $ is the outward-pointing unit normal along $ X|_{\sigma_j}:\sigma_j \to \Pi_j $, and $ ds $ is the $ (n-1) $-dimensional volume form of $ X|_{\sigma_j} $.
The Eq (3.1) with (3.2), (3.3) gives the following Euler–Lagrange equations.
Proposition 2. An immersion $ X:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ is a capillary hypersurface if and only if both of the following conditions (i) and (ii) hold.
(i) The anisotropic mean curvature $ \Lambda $ of $ X $ is constant on $ M $.
(ii) $ \langle \tilde{\xi}, \tilde{N}_j\rangle = \omega_j $ on $ \sigma_j $ ($ j = 1, \cdots, k $), where $ \tilde{\xi} $ is the Cahn–Hoffman field along $ X $.
Proof. Note that $ X $ is a capillary hypersurface if and only if, for all volume-preserving variations $ X_\epsilon:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $, ($ -\epsilon_0 < \epsilon < \epsilon_0 $), $ \delta E = 0 $ holds. This is equivalent to the fact that, there exists a constant $ \Lambda_0 $ such that
$ δ(E+nΛ0V)=δFγ+δW+nΛ0δV=−n∫M(Λ−Λ0)⟨δX,ν⟩dA−k∑j=1∮σj⟨δX,(R(p(˜ξ))−ωjρ)⟩ds $
|
(3.4) |
$ =0 $
|
(3.5) |
holds for all variations $ X_\epsilon:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $, ($ -\epsilon_0 < \epsilon < \epsilon_0, \ \epsilon_0 > 0 $) of $ X $.
First we assume that $ X $ is a capillary hypersurface. By taking variations that preserve the boundary values $ X|_{\partial M} $, we have from (3.4), (3.5) that
$ ∫M(Λ−Λ0)ψdA=0,∀ψ∈C∞0(Σ), $
|
(3.6) |
which implies
$ Λ−Λ0=0,on M. $
|
(3.7) |
This proves (i). Next, take variations that preserve the boundary values $ X|_{\sigma_2\cup\cdots \cup\sigma_k} $. Then we have from (3.4), (3.5), (3.6) that
$ ∮σ1⟨δX,(R(p(˜ξ))−ω1ρ)⟩ds=0 $
|
(3.8) |
holds for all variations $ X_\epsilon $ satisfying $ X_\epsilon(\sigma_1) \subset \Pi_1 $. This means that
$ (R(p(˜ξ))−ω1ρ)∥˜N1,on σ1 $
|
(3.9) |
holds. Note that the $ (N, \nu) $-plane is the same as the $ (\tilde{N}_1, \rho) $-plane because both of them are the orthogonal compliment of the $ (n-1) $-dimensional tangent space of $ X(\sigma_1) $ in $ {\mathbb R}^{n+1} $ at each point in $ X(\sigma_1) $. Therefore, (3.9) is equivalent to
$ ⟨p(˜ξ)−ω1˜N1,˜N1⟩=0,on σ1. $
|
(3.10) |
And (3.10) is equivalent to
$ ⟨˜ξ−ω1˜N1,˜N1⟩=0,on σ1, $
|
(3.11) |
which means that
$ ⟨˜ξ,˜N1⟩=ω1,on σ1. $
|
(3.12) |
Similarly, we have
$ ⟨˜ξ,˜Nj⟩=ωj,on σj,j=1,⋯,k, $
|
(3.13) |
which proves (ii).
Next we assume that (i) and (ii) are satisfied. Then, by using the computations above, we know that $ X $ is a capillary hypersurface.
Theorem 2 is given by Proposition 2.
Here we pose a new variational problem that will be used in the proof of a balancing formula (Lemma 2) in §4. Consider a more general class of surfaces than above:
$ S:={X:(M,σ1,⋯,σk)→(Rn+1,˜Π1,⋯,˜Πk);Xis an immersion,each˜Πjis any hyperplane that is parallel toΠj,andthe restrictionX|∂Mis an embedding onto the disjoint union ofktopologicalSn−1.}. $
|
For $ X \in {\mathcal S} $, set $ C_j: = X(\sigma_j) $ and denote by $ D_j $ the $ n $-dimensional domain bounded by $ C_j $ in $ \tilde{\Pi}_j $. Moreover, set
$ S_X: = X(M) \cup D_1 \cup \cdots \cup D_k. $ |
Denote by $ dA $ the $ n $-dimensional standard volume form on $ S_X $. Note that each $ \tilde{N}_j $ is a unit normal to $ \tilde{\Pi}_j $. Define the algebraic volume $ \overline{V}(X) $ enclosed by $ S_X $ as
$ \overline{V}(X): = \frac{1}{n+1}\int_M \langle X, \nu\rangle \;dA + \frac{1}{n+1}\sum\limits_{j = 1}^k \int_{D_j} \langle x, \tilde{N}_j\rangle \;dA, $ |
where we denoted the variable point in $ D_j $ by $ x $. And define the energy $ \overline{\mathcal F}_\gamma(X) $ of $ X $ as
$ \overline{\mathcal F}_\gamma(X) = {\mathcal F}_\gamma(X) +\sum\limits_{j = 1}^k\omega_j{\mathcal H}^n(D_j). $ |
Then, similarly to our capillary problem, we obtain the following first variation formulas.
Lemma 1.
$ δ¯V=∫M⟨δX,ν⟩dA+k∑j=1∫Dj⟨δX,˜Nj⟩dA, $
|
(3.14) |
$ δFγ=−∫MnΛ⟨δX,ν⟩−∮∂M⟨δX,R(p(˜ξ))⟩ds, $
|
(3.15) |
$ δHn(Dj)=∫σj⟨δX,ρ⟩ds. $
|
(3.16) |
Proof. (3.14) is a standard formula (cf. [2]). (3.15) is given in proposition 1. We will prove (3.16). Consider the orthogonal projection $ p_j:\tilde{\Pi}_j \to \Pi_j $. Then,
$ p_j(\delta X) = \delta X-\langle \delta X, \tilde{N}_j\rangle\tilde{N}_j. $ |
Since
$ {\mathcal H}\bigl((D_j)_\epsilon \bigr) = \frac{1}{n}\int_{\sigma_j}\langle X_\epsilon, \rho_\epsilon\rangle \;ds_\epsilon = \frac{1}{n}\int_{\sigma_j}\langle p_j(X_\epsilon), \rho_\epsilon\rangle \;ds_\epsilon, $ |
we obtain
$ δHn(Dj)=∫σj⟨δ(pj(X)),ρ⟩ds=∫σj⟨pj(δX),ρ⟩ds=∫σj⟨δX−⟨δX,˜Nj⟩˜Nj,ρ⟩ds=∫σj⟨δX,ρ⟩ds, $
|
which proves (3.16).
In order to prove the uniqueness part of Theorem 1, we will show that any capillary hypersurface $ X:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ is unstable unless it is a part of a rescaling of the Wulff shape.
In view of the condition (ii) in Proposition 2, it is useful to consider the anisotropic energy for $ (n-1) $-dimensional closed hypersurfaces in $ \Pi_j $. First, define hyperplanes $ P_j $ in $ {\mathbb R}^{n+1} $ ($ j = 1, \cdots, k $) by
$ Pj:={x∈Rn+1;⟨x,˜Nj⟩=ωj}. $
|
Then, set the followings:
$ ˆWj:=Wγ∩Pj,ˆOj:=ωj˜Nj. $
|
Assume that $ \omega_j\ge 0 $ is sufficiently small so that $ \hat{W}_j $ includes at least two distinct points. Then, $ \hat{W}_j $ is a strictly convex closed $ (n-1) $-dimensional $ C^\infty $ hypersurface in the $ n $-dimensional linear space $ P_j $. We regard the point $ \hat{O}_j $ as the origin of $ P_j $. Denote by $ \hat{\gamma}_j:S^{n-1} \to {\mathbb R}_{ > 0} $ the support function of $ \hat{W}_j $, that is, for any $ \rho\in S^{n-1} $, $ \hat{\gamma}_j(\rho) $ is the distance between the origin $ \hat{O}_j $ and the tangent space of $ \hat{W}_j $ at the uniquely-determined point $ w\in \hat{W}_j $ such that the outward-pointing unit normal to $ \hat{W}_j $ at $ p $ coincides with $ \rho $. Then, $ \hat{W}_j $ is the Wulff shape for $ \hat{\gamma}_j $. For later use, we denote by $ \hat{\xi}_j $ the Cahn–Hoffman map for $ \hat{\gamma}_j $.
Now, let $ \chi:S^{n-1} \to \Pi_j $ be a $ C^\infty $ embedding with outward unit normal $ \rho = \rho_j $. Define the anisotropic energy of $ \chi $ by
$ ˆFj(χ):=∫Sn−1ˆγj(ρ)ds, $
|
(4.1) |
where $ ds $ is the $ (n-1) $-dimensional volume form of $ \chi $.
From now on, we assume that
$ X:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ |
is a capillary hypersurface. Set
$ χj:=X|σj. $
|
Denote by $ \rho $ the outward-pointing unit normal to $ \chi_j $ in the hyperplane $ \Pi_j $. $ X $ has the following property, which we call the balancing formula that is a generalization of the balancing formula for the isotropic case [3].
Lemma 2.
$ ˆFj(χj)=−nΛHn(Dj),j=1,⋯,k. $
|
(4.2) |
Proof. Let $ u $ be a constant vector in $ {\mathbb R}^{n+1} $. Under parallel translations:
$ X_t = X+tu, $ |
$ \overline{V} $, $ {\mathcal F}_\gamma $, $ {\mathcal H}^n(D_j) $ are invariant. Hence, using the first variation formulas we gave above, we compute
$ 0=ddt|t=0¯Fγ(Xt)=ddt|t=0(¯Fγ(Xt)+nΛ¯V(Xt))=−n∫MΛ⟨u,ν⟩dA−∮∂M⟨u,R(p(˜ξ))⟩ds+k∑j=1ωj∮σj⟨u,ρ⟩ds+nΛ∫M⟨u,ν⟩dA+nΛk∑j=1∫Dj⟨u,˜Nj⟩dA=−∮∂M⟨u,R(p(˜ξ))⟩ds+nΛk∑j=1∫Dj⟨u,˜Nj⟩dA. $
|
By setting $ u = (1, 0, \cdots, 0) $, $ (0, 1, \cdots, 0) $, $ \cdots $, $ (0, \cdots, 0, 1) $, we have
$ −nΛk∑j=1Hn(Dj)˜Nj=−k∑j=1∮σjR(p(˜ξ))ds. $
|
(4.3) |
On $ \sigma_j $, since $ \langle \tilde{\xi}, \tilde{N}_j\rangle = \omega_j $ and $ \langle \tilde{\xi}, \rho_j\rangle = \langle \hat{\xi}_j, \rho_j\rangle = \hat{\gamma}_j $ hold, we can write
$ \tilde{\xi} = \omega_j\tilde{N}_j+\hat{\gamma}_j\rho_j+\tau, $ |
where $ \tau $ is tangent to $ C_j $. Then, we have
$ R(p(˜ξ))=R(ωj˜Nj+ˆγjρj)=ωjρj−ˆγj˜Nj. $
|
(4.4) |
Note that, by the divergence theorem, it holds that
$ \oint_{\sigma_j}\rho_j\;ds = 0. $ |
Hence, substituting Eq (4.4) into Eq (4.3), we obtain
$ −nΛk∑j=1Hn(Dj)˜Nj=k∑j=1∮σjˆγj˜Njds=k∑j=1ˆFj(χj)˜Nj. $
|
(4.5) |
Because $ \tilde{N}_1 $, $ \cdots $, $ \tilde{N}_k $ are linearly independent, Eq (4.5) implies Eq (4.2).
Now, consider the anisotropic parallel hypersurfaces $ X_t: = X+t\tilde{\xi} $ ($ t \in {\mathbb R} $, $ |t| < < 1 $) of $ X $ (Figure 2, upper left). If $ \omega_j > 0 $ for some $ j \in \{1, \cdots, k\} $, then $ X_t $ does not satisfy the boundary condition, that is, the boundary $ X_t(\partial M) $ of the hypersurface may not be included in the boundary $ \partial \Omega \subset \Pi_1 \cup \cdots \cup \Pi_k $ of the wedge-shaped domain $ \Omega $. We will prove that, by taking a suitable parallel translation $ Z_t = X_t+t\vec{v} $ of $ X_t $, $ Z_t $ satisfies the boundary condition (Figure 2, upper right).
For any $ a \in {\mathbb R} $, define the hyperplane $ \Pi_j^a $ in $ {\mathbb R}^{n+1} $ that is parallel to the hyperplane $ \Pi_j $ as follows.
$ Πaj:=Πj+a˜Nj={P+a˜Nj|P∈Πj}. $
|
(4.6) |
Then, we show:
Lemma 3. $ X_t(\sigma_j)\subset \Pi_j^{t\omega_j} $ holds.
Proof. From Proposition 2 (ii), we have
$ ⟨˜ξ,˜Nj⟩=ωj,on σj, (j=1,⋯,k). $
|
(4.7) |
Since $ X(\sigma_j) \subset \Pi_j $, (4.7) gives the desired result.
By using Lemma 3, we will show the following.
Lemma 4. There exists some $ \vec{v} \in {\mathbb R}^{n+1} $ such that
$ ⟨→v,˜Nj⟩=−ωj,j=1,⋯,k $
|
(4.8) |
is satisfied, and the parallel translation $ Z_t = X_t+t\vec{v} $ of $ X_t $ satisfies the boundary condition, that is,
$ Zt(σj)⊂Πj,j=1,⋯,k $
|
(4.9) |
holds.
Proof. From Lemma 3,
$ X_t(\sigma_j)\subset \Pi_j+t\omega_j\tilde{N}_j $ |
holds. Hence, for any $ \vec{v} \in {\mathbb R}^{n+1} $,
$ X_t(\sigma_j) + t\vec{v}\subset \Pi_j+t(\omega_j\tilde{N}_j+\vec{v}) $ |
holds. Therefore, $ X_t(\sigma_j) + t\vec{v}\subset \Pi_j $ if and only if $ \omega_j\tilde{N}_j+\vec{v} \in \Pi_j $, which is equivalent to
$ ⟨ωj˜Nj+→v,˜Nj⟩=0, $
|
(4.10) |
that is,
$ ⟨→v,˜Nj⟩=−ωj. $
|
(4.11) |
Now set $ \vec{v} = (v_1, \cdots, v_{n+1}) $. Then,
$ ⟨→v,˜Nj⟩=−ωj,j=1,⋯,k $
|
(4.12) |
is a system of linear equations in the $ (n+1) $ variables $ v_1, \cdots, v_{n+1} $ with $ k $ equations satisfying $ k \le n+1 $. Hence, (4.12) has at least one solution $ \vec{v} $, which proves the desired result.
We have proved that $ Z_t = X_t+t\vec{v} $ satisfies the boundary condition. However, it is not a volume-preserving variation in general. We can take suitable homotheties
$ Y_t: = \mu(t)Z_t = \mu(t)\large(X+t(\tilde{\xi}+\vec{v})\large), \ \mu(t) \ge 0, \ \mu(0) = 1, $ |
of $ Z_t $ if necessary so that $ Y_t:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ is a volume-preserving variation of $ X $ (Figure 2).
Denote by $ e(t) $ the total energy $ E(Y_t) $ of $ Y_t $. Then we obtain
Claim 1.
$ e"(0)=−1n∫Mγ(ν)∑1≤i<j≤n(kγi−kγj)2dA $
|
(4.13) |
$ −n−1nk∑j=1ωj(n∫σjˆγj(ρ)ˆΛds+(∫σjˆγj(ρ)ds)2Hn(Dj)), $
|
(4.14) |
where $ \hat{\Lambda} $ is the anisotropic curvature of $ \chi_j $ for $ \hat{\gamma}_j $.
Claim 1 will be proved in §6. Note that, from Remark 2(i), each $ k_j^\gamma $ is real. Since $ X $ has constant anisotropic mean curvature $ \Lambda $, the first term of the right hand side of Eq (4.13) is nonnegative if and only if $ k_1^\gamma = \cdots = k_n^\gamma = \Lambda/n \ne 0 $. Hence, by Corollary 1 in [15], $ X(M) \subset (1/|\Lambda|)W_\gamma $ holds. Here we used $ \Lambda\ne 0 $ which is true because of Lemma 2.
Let us study the second term of the right hand side of the equation of $ e"(0) $ in Claim 1. Set
$ Bj:=∫σjˆγj(ρ)ˆΛds+(∫σjˆγ(ρ)ds)2nHn(Dj). $
|
(4.15) |
Then we can prove the following statement (see §7 for its proof).
Claim 2. $ B_j \ge 0 $ holds and that the equality holds if and only if $ \chi_j(\sigma_j) = r\hat{W}_j $ for some $ r > 0 $.
Now we are in the final position to complete the proof of the first half of Theorem 1. If the capillary hypersurface $ X $ is stable, then $ e"(0)\ge 0 $ must hold. Hence, by the above observations, $ X(M) \subset (1/|\Lambda|)W_\gamma $ holds.
Let $ X:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ be an anisotropic capillary hypersurface, and we assume that $ X $ is an embedding onto a part of $ W_\gamma $ (up to translation and homothety). We will prove that $ X $ is stable. It is sufficient to prove the stability for the case where $ X $ is an embedding onto a part of $ W_\gamma $. Then, there exists a point $ Q \in {\mathbb R}^{n+1} $ such that
$ X(M) = (W_\gamma+Q)\cap \overline{\Omega} $ |
holds. Set
$ Σ:=X(M)∪D1∪⋯∪Dk=((Wγ+Q)∩¯Ω)∪D1∪⋯∪Dk. $
|
(5.1) |
Then, $ \Sigma $ is a closed convex piecewise-smooth hypersurface in $ {\mathbb R}^{n+1} $. We will derive the support function of $ \Sigma $ ([16]). For any $ x \in S^n $, we define a hyperplane $ P(x) $ that is orthogonal to $ x $ as follows.
$ P(x):={y∈Rn+1|⟨x,y⟩=0}. $
|
(5.2) |
Define a continuous function $ \varphi: S^n \to {\mathbb R}_{ > 0} $ as follows.
$ φ(x):=max{t∈R|(Q+tx+P(x))∩Σ≠∅}. $
|
(5.3) |
Then, the homogeneous extension $ \overline{\varphi}:{\mathbb R}^{n+1} \to {\mathbb R} $ of $ \varphi $ is the support function of $ \Sigma $. Then, $ \Sigma $ is the Wulff shape for $ \varphi $ ([17]), that is, $ \Sigma = W_\varphi $ holds. Note that
$ γ(x):=max{t∈R|(tx+P(x))∩Wγ≠∅}=max{t∈R|(Q+tx+P(x))∩(Wγ+Q)≠∅} $
|
(5.4) |
holds. Since $ \gamma(x)\ge \varphi(x) $ holds, we have $ \tilde{W}[\gamma] \supset \tilde{W}[\varphi] $. Hence we have the followings:
(i) If $ x \in \nu(M) $, then $ \varphi(x) = \gamma(x) $.
(ii) If $ x = \tilde{N}_j $, then $ \varphi(x) = \omega_j < \gamma(x) $, ($ j = 1, \cdots, k $).
(iii) If $ x \in S^n\setminus (\nu(M)\cup \{\tilde{N}_1, \cdots, \tilde{N}_k \}) $, then $ \varphi(x) < \gamma(x) $.
Now let $ X_t:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ be a volume-preserving variation of $ X $. Denote by $ D_j(X_t) $ the domain bounded by $ X_t(\sigma_j) $ in $ \Pi_j $. Set
$ \Sigma_t: = X_t(M)\cup D_1(X_t) \cup \cdots, \cup D_k(X_t). $ |
Then, because $ \gamma \ge \varphi $ and $ \Sigma $ is the minimizer of $ {\mathcal F}_\varphi $ among all closed piecewise-smooth hypersurfaces enclosing the same $ (n+1) $-dimensional volume, we obtain
$ Eγ(X)=Fφ(Σ)≤Fφ(Σt)=Fφ(Xt)+W(Xt)≤Fγ(Xt)+W(Xt)=Eγ(Xt) $
|
holds. Therefore, $ X $ is stable.
Recall
$ Yt=μ(t)Zt, μ(t)≥0, μ(0)=1, $
|
(6.1) |
$ Zt=Xt+t→v, $
|
(6.2) |
$ Xt=X+t˜ξ, $
|
(6.3) |
$ Y_t:(M, \sigma_1, \cdots, \sigma_k)\to (\overline\Omega, \Pi_1, \cdots, \Pi_k) $ is a volume-preserving variation of $ X $ that satisfies the boundary condition. Note that the unit normal vector field along $ X_t $, $ Z_t $, and $ Y_t $ coincide with $ \nu:M\to S^n $ that is the unit normal vector field along $ X $. Hence,
$ e(t): = E(Y_t) = {\mathcal F}_\gamma(Y_t)+{\mathcal W}(Y_t) = \int_M \gamma(\nu)\;dA_{Y_t}+\sum\limits_{j = 1}^k \omega_j {\mathcal H}^n(D_j(Y_t)) $ |
holds, where $ dA_{Y_t} $ is the $ n $-dimensional volume form of $ Y_t $.
Set
$ V0:=V(X),E0:=E(X),F0:=Fγ(X),W0:=Wγ(X), $
|
(6.4) |
and
$ v(t):=V(Yt),f(t):=Fγ(Xt),w(t):=Wγ(Xt). $
|
(6.5) |
Then
$ e(t)=(μ(t))n(f(t)+w(t)), $
|
(6.6) |
$ v(t)=(μ(t))n+1V(Zt), $
|
(6.7) |
$ e′(t)=n(μ(t))n−1μ′(t)(f(t)+w(t))+(μ(t))n(f′(t)+w′(t)), $
|
(6.8) |
$ e"(t)=n(n−1)(μ(t))n−2(μ′(t))2(f(t)+w(t))+2n(μ(t))n−1μ′(t)(f′(t)+w′(t))+n(μ(t))n−1μ"(t)(f(t)+w(t))+(μ(t))n(f"(t)+w"(t)), $
|
(6.9) |
$ v′(t)=(n+1)(μ(t))nμ′(t)V(Zt)+(μ(t))n+1ddtV(Zt), $
|
(6.10) |
$ v"(t)=(n+1)n(μ(t))n−1(μ′(t))2V(Zt)+(n+1)(μ(t))nμ"(t)V(Zt)+2(n+1)(μ(t))nμ′(t)ddtV(Zt)+(μ(t))n+1d2dt2V(Zt). $
|
(6.11) |
In order to compute $ e"(0) $, we need to compute $ \mu'(0), \mu"(0), f'(0)+w'(0), f"(0) $, and $ w"(0) $. First, using the Steiner-type formula (2.4), we obtain the followings.
$ f′(0)=−n∫MΛγ(ν)dA=−nΛF0, $
|
(6.12) |
$ f"(0)=∫M2(nC2)γ(ν)Hγ2dA=∫M2γ(ν)σγ2dA=2∫Mγ(ν)∑1≤i<j≤nkγikγjdA. $
|
(6.13) |
Before computing the other derivatives, we prepare two useful lemmas.
Lemma 5. We have the following equalities.
(i)
$ ddtV(Zt)=E(Zt). $
|
(6.14) |
(ii) In the special case where $ k = 0 $, that is $ \partial M = \emptyset $, we have
$ ddtV(Xt)=Fγ(Xt). $
|
(6.15) |
Proof. Since
$ dA_{Z_t} = dA_{X_t}, \quad \tilde{\xi} = D\gamma|_{\nu}+\gamma(\nu)\nu, $ |
by using the first variation formula (3.2) for the volume, we have
$ ddtV(Zt)=∫M⟨∂Zt∂t,ν⟩dAXt=∫M(γ(ν)+⟨→v,ν⟩)dAXt=Fγ(Xt)+∫M⟨→v,ν⟩dAXt. $
|
(6.16) |
We compute the last term of (6.16). Denote by $ dA(\Pi_j^{t\omega_j}) $ the standard volume form on the $ n $-plane $ \Pi_j^{t\omega_j} $. Using the divergence formula and the equality $ \langle \vec{v}, \tilde{N}_j\rangle = -\omega_j $ (see Lemma 4), we have
$ ∫M⟨→v,ν⟩dAXt=−k∑j=1∫Dj(Xt)⟨→v,˜Nj⟩dA(Πtωjj)=k∑j=1ωjHn(Dj(Xt))=W(Zt). $
|
(6.17) |
(6.16) with (6.17) gives the desired equality (6.14). The proof of (6.15) is similar.
Lemma 6. We have the following equality.
$ E0=−(n+1)ΛV0. $
|
(6.18) |
Proof. Consider the variation $ {\hat X}_\epsilon: = (1+\epsilon)X $ of $ X $, and set $ F(\epsilon): = {\mathcal F}_\gamma({\hat X}_\epsilon) $. Then,
$ F(\epsilon) = (1+\epsilon)^nF_0. $ |
Hence,
$ F′(0)=nF0. $
|
(6.19) |
On the other hand, the first variation formula (3.1) of $ {\mathcal F}_\gamma $ gives
$ F′(0)=−n∫MΛ⟨X,ν⟩dA−∫∂M⟨X,R(p(˜ξ))⟩ds=−n(n+1)ΛV0−k∑j=1∫σj⟨X,R(p(˜ξ))⟩ds. $
|
(6.20) |
We compute the integrand of the second term of (6.20) on $ \sigma_j $. Proposition 2 (ii) gives $ \langle \tilde{\xi}, \tilde{N}_j\rangle = \omega_j $ on $ \sigma_j $. Hence,
$ p(˜ξ)=ωj˜Nj+⟨p(˜ξ),ρ⟩ρ. $
|
(6.21) |
Using (6.21) and the equality $ \langle X, \tilde{N}_j\rangle = 0 $, we have
$ ⟨X,R(p(˜ξ))⟩=⟨X,ωjρ−⟨p(˜ξ),ρ⟩˜Nj⟩=ωj⟨X,ρ⟩. $
|
(6.22) |
Inserting (6.22) to (6.20), we obtain
$ F′(0)=−n(n+1)ΛV0−k∑j=1ωj∫σj⟨X,ρ⟩ds=−n(n+1)ΛV0−nk∑j=1ωjHn(Dj)=−n(n+1)ΛV0−nW0. $
|
(6.23) |
(6.19) with (6.23) gives the desired equality (6.18).
Let us continue the proof of Claim 1. Using the equalities (6.1), (6.10), and (6.14), we have
$ 0=v′(0)=(n+1)μ′(0)V0+E0. $
|
(6.24) |
Hence we have
$ μ′(0)=−E0(n+1)V0. $
|
(6.25) |
Next we compute $ f'(0)+w'(0) $. Note that $ e'(0) = 0 $ because $ X $ is a capillary hypersurface. Using (6.8) and (6.25), we obtain
$ 0=e′(0)=nμ′(0)E0+f′(0)+w′(0)=−nE20(n+1)V0+f′(0)+w′(0), $
|
(6.26) |
which implies that
$ f′(0)+w′(0)=nE20(n+1)V0 $
|
(6.27) |
holds.
Now we compute $ w"(0) $. Using the first variation formula (3.2) for volume, we obtain
$ w′(t)=k∑j=1ωj∫σj⟨˜ξ,ρt⟩dst=k∑j=1ωjˆFj(Xt|σj), $
|
(6.28) |
where $ \rho_t $ is the outward-pointing unit normal vector field along $ X_t|_{\sigma_j}:\sigma_j \to \Pi_j^{t\omega_j} $, and $ ds_t $ is the $ (n-1) $-dimensional volume form of $ X_t|_{\sigma_j} $. Using (6.28) and the first variation formula (3.1) of the anisotropic energy, we obtain
$ w"(0)=−(n−1)k∑j=1ωj∫σjˆΛˆγj(ρ)ds. $
|
(6.29) |
Finally we compute $ \mu"(0) $ by using $ v"(0) = 0 $ and (6.11). From (6.14), we have
$ ddtV(Zt)|t=0=E0, $
|
(6.30) |
$ d2dt2V(Zt)|t=0=ddtE(Zt)|t=0=nE20(n+1)V0, $
|
(6.31) |
here in the last equality we used (6.8). Inserting (6.25), (6.30), (6.31) to (6.11), we compute to obtain
$ μ"(0)=2E20(n+1)2V20. $
|
(6.32) |
Inserting (6.13), (6.25), (6.8), (6.29), and (6.32) to (6.9) at $ t = 0 $, we obtain
$ e"(0)=−n(n−1)E30(n+1)2V20+2∫Mγ(ν)∑1≤i<j≤nkγikγjdA−(n−1)k∑j=1ωj∫σjˆΛˆγj(ρ)ds. $
|
(6.33) |
From Lemma 6, we have
$ \frac{E_0}{V_0} = -(n+1)\Lambda. $ |
Inserting this to (6.33), we obtain
$ e"(0)=−n(n−1)Λ2E0+2∫Mγ(ν)∑1≤i<j≤nkγikγjdA−(n−1)k∑j=1ωj∫σjˆΛˆγj(ρ)ds=−1n∫Mγ(ν)∑1≤i<j≤n(kγi−kγj)2dA−n(n−1)Λ2W0−(n−1)k∑j=1ωj∫σjˆΛˆγj(ρ)ds. $
|
(6.34) |
Now we are in the final stage to prove Claim 1. The balancing formula (4.2) implies
$ \Lambda = \frac{-\int_{\sigma_j}\hat{\gamma}_j(\rho)\;ds}{n\mathcal{H}^{n}(D_j)}, \quad j = 1, \cdots, k. $ |
Hence
$ -n(n-1)\Lambda^2W_0 = -n(n-1)\sum\limits_{j = 1}^k \Lambda^2\omega_j\mathcal{H}^{n}(D_j) = -\frac{n-1}{n}\sum\limits_{j = 1}^k\omega_j \frac {\Bigl( \int_{\sigma_j}\hat{\gamma}_j(\rho)\;ds \Bigr)^2 } {\mathcal{H}^{n}(D_j) } $ |
holds. This with (6.34) proves Claim 1.
In this section, we examine the sign of
$ Bj:=∫σjˆγj(ρ)ˆΛds+(ˆFj(χj))2nHn(Dj), $
|
(7.1) |
where
$ {\hat{\mathcal F}}_j(\chi_j) = \int_{\sigma_j} \hat{\gamma}(\rho) \;ds. $ |
First, we recall two known useful propositions, which we prove for completeness.
Proposition 3. Let $ \gamma:S^m \to {\mathbb R}_{ > 0} $ be a positive strictly convex function of class at least $ C^2 $, and $ W \subset {\mathbb R}^{m+1} $ be its Wulff shape. Denote by $ {\mathcal F}_\gamma(W) $ the anisotropic energy of $ W $ for $ \gamma $, and by $ {\mathcal H}^{m+1}(W) $ the $ (m+1) $-dimensional Hausdorff measure of the domain bounded by $ W $ in $ {\mathbb R}^{m+1} $. Then,
$ Fγ(W)=(m+1)Hm+1(W) $
|
(7.2) |
holds.
Proof. Let $ \xi:S^m \to{\mathbb R}^{m+1} $ be the Cahn-Hoffman map of $ \gamma $ defined by $ \xi(\nu) = D\gamma|_{\nu} +\gamma(\nu)\nu $. Then $ \xi $ is an embedding onto $ W $. Hence, denoting by $ dA_{\xi} $ the volume form of $ \xi $, we have
$ {\mathcal F}_\gamma(W) = \int_{S^m} \gamma(\nu)\;dA_{\xi} = \int_{S^m} \langle \xi(\nu), \nu \rangle \;dA_{\xi} = (m+1){\mathcal H}^{m+1}(W), $ |
which proves (7.2).
Proposition 4 (Anisotropic isoperimetric inequality). Let $ \gamma $, $ W $ be the same as in Proposition 3. We also use the same notation as in Proposition 3. Then, for any closed embedded piecewise-smooth hypersurface $ M $ in $ {\mathbb R}^{m+1} $, it holds that
$ (Fγ(M))m+1≥(m+1)m+1Hm+1(W)(Hm+1(M))m, $
|
(7.3) |
where the equality holds if and only if $ M $ coincides with $ W $ up to homothety and translation in $ {\mathbb R}^{m+1} $.
Proof. Recall that the Wulff shape $ W $ is the minimizer of $ {\mathcal F}_\gamma $ among closed hypersurfaces enclosing the same $ (m+1) $-dimensional Hausdorff measure. Set
$ c = \Biggl( \frac{{\mathcal H}^{m+1}\;(W)} {{\mathcal H}^{m+1}\;(M)} \Biggr)^{\frac{1}{m+1}}. $ |
Then, the hypersurface
$ M_c: = cM $ |
similar to $ M $ encloses the same $ (m+1) $-dimensional Hausdorff measure as $ W $. Hence,
$ Fγ(Mc)≥Fγ(W) $
|
(7.4) |
holds, where the equality holds if and only if $ M $ coincides with $ W $ up to homothety and translation. On the other hand,
$ Fγ(Mc)=cmFγ(M)=(Hm+1(W)Hm+1(M))mm+1Fγ(M). $
|
(7.5) |
The inequality (7.4) combined with the equalities (7.2) and (7.5) gives (7.3).
Now we examine $ B_j $. From now on, for simplicity, we identify an embedded closed hypersurface in an euclidean space with the domain bounded by this hypersurface. We also identify an embedded closed hypersurface with its representation mapping.
Using Proposition 4, we have
$ Bj=∫σjˆγj(ρ)ˆΛds+(ˆFj(χj))2nHn(Dj)≥∫σjˆγj(ρ)ˆΛds+n(Hn(ˆWγ))2n(Hn(Dj))n−2n. $
|
(7.6) |
First we study the special case where $ n = 2 $. In this case, using (7.6) with Proposition 3, we have
$ Bj≥∫σjˆγj(ρ)ˆΛds+2H2(ˆWj)=∫σjˆγj(ρ)ˆΛds+ˆFj(ˆWj). $
|
(7.7) |
We use the representation (2.2) of the anisotropic mean curvature in Remark 1. Note that $ \sigma_j $ is topologically $ S^1 $. Denote by $ G:{\hat{W}}_j\to S^1 $ the outward-pointing unit normal vector field on $ {\hat{W}}_j $ and by $ \hat{s} $ the arc-length parameter of $ {\hat{W}}_j $. Then $ G = \hat{\xi}_j^{-1} $, where $ \hat{\xi}_j:S^1 \to {\hat{W}}_j $ is the Cahn-Hoffman map of $ {\hat{W}}_j $. Hence, if we take $ \rho \in S^1 $ as the parameter of $ {\hat{W}}_j $ through $ \hat{\xi}_j $, $ G $ is the identity mapping on $ S^1 $. We also denote by $ \kappa_j $, $ \hat{\kappa}_j $ the curvatures of $ \chi_j $, $ {\hat{W}}_j $ with respect to the outward-pointing unit normal, respectively. Then, using (2.2), we have
$ ∫σjˆγj(ρ)ˆΛds=−∫σjˆγj(ρ)κjˆκjds=−∫S1ˆγj(ρ)dρdsdGdˆsds=−∫S1ˆγj(ρ)dρdGdˆs=−∫S1ˆγj(ρ)dˆs=−ˆFj(ˆWj). $
|
(7.8) |
Inserting (7.8) into (7.7), we have $ B_j\ge 0 $.
Next we assume $ n\ge 3 $. We assume that $ D_j $ are convex. Below, for simplicity, we omit the subscript $ j $, that is, we write $ D $ instead of $ D_j $, for instance. On the Minkowski sum $ D+t\hat{W} $, there holds
$ Hn(D+tˆW)=n∑i=0(nCi)tiv((n−i)times⏞D,…,D,itimes⏞ˆW,…,ˆW), $
|
(7.9) |
where $ v(K_1, \cdots, K_n) $ is the so-called the mixed volume of convex bodies $ K_1, \cdots, K_n $ in $ {\mathbb R}^n $ ([16, Theorem 5.1.7]). On the other hand, from Lemma 5 and the Steiner-type formula (2.4), we have
$ Hn(D+tˆW)=Hn(χ+tˆξ)=Hn(χ)+∫t0ˆF(χ+tˆξ)dt=Hn(D)+∫t0(∫σˆγ(ρ)n−1∑r=0(−1)r(n−1Cr)trˆHˆγrds)dt=Hn(D)+n−1∑r=0(−1)rr+1(n−1Cr)tr+1∫σˆγ(ρ)ˆHˆγrds. $
|
(7.10) |
Comparing (7.9) with (7.10), we obtain
$ v(ntimes⏞D,…,D)=Hn(D), $
|
(7.11) |
$ v((n−1)times⏞D,…,D,ˆW)=1n∫σˆγ(ρ)ds, $
|
(7.12) |
$ v((n−2)times⏞D,…,D,ˆW,ˆW)=−1n∫σˆγ(ρ)ˆΛds. $
|
(7.13) |
The Minkowski's second inequality ([16,Theorem 7.2.1]) gives
$ (v((n−1)times⏞D,…,D,ˆW))2≥v(ntimes⏞D,…,D)⋅v((n−2)times⏞D,…,D,ˆW,ˆW), $
|
(7.14) |
where the equality holds if and only if $ D $ is homothetic to $ \hat{W} $. Combining (7.11)–(7.14), we obtain
$ (∫σˆγ(ρ)ds)2≥−nHn(D)∫σˆγ(ρ)ˆΛds, $
|
(7.15) |
here the equality holds if and only if $ D $ is homothetic to $ \hat{W} $. This completes the proof of Claim 2.
This work was partially supported by JSPS KAKENHI Grant Number JP20H01801, JSPS Grant-in-Aid for Scientific Research on Innovative Areas "Discrete Geometric Analysis for Materials Design": Grant Numbers JP18H04487 and JP20H04642, JST CREST GrantNumber JPMJCR1911, and JSPS(Japan)-FWF(Austria) Joint Research Project (2018-2019, Project leader (Japan): Miyuki Koiso).
The authors declare no conflict of interest.
[1] | World Anti-Doping Agency (2015) World anti-doping code. World Anti-Doping Agency. |
[2] |
Shahidi NT (2001) A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin Ther 23: 1355–1390. doi: 10.1016/S0149-2918(01)80114-4
![]() |
[3] |
Celotti F, Negri-Cesi P (1992) Anabolic-Steroids - a Review of Their Effects on the Muscles, of Their Possible Mechanisms of Action and of Their Use in Athletics. J Steroid Biochem Mol Biol 43: 469–477. doi: 10.1016/0960-0760(92)90085-W
![]() |
[4] | Dalbo VJ, Roberts MD, Mobley CB, et al. (2017) Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle. Andrologia 49. |
[5] |
Bennett NC, Gardiner RA, Hooper JD, et al. (2010) Molecular cell biology of androgen receptor signalling. Int J Biochem Cell Biol 42: 813–827. doi: 10.1016/j.biocel.2009.11.013
![]() |
[6] |
Kicman AT (2008) Pharmacology of anabolic steroids. Br J Pharmacol 154: 502–521. doi: 10.1038/bjp.2008.165
![]() |
[7] |
Li J, Al-Azzawi F (2009) Mechanism of androgen receptor action. Maturitas 63: 142–148. doi: 10.1016/j.maturitas.2009.03.008
![]() |
[8] |
Maravelias C, Dona A, Stefanidou M, et al. (2005) Adverse effects of anabolic steroids in athletes. A constant threat. Toxicol Lett 158: 167–175. doi: 10.1016/j.toxlet.2005.06.005
![]() |
[9] |
Foradori CD, Weiser MJ, Handa RJ (2008) Non-genomic actions of androgens. Front Neuroendocrinol 29: 169–181. doi: 10.1016/j.yfrne.2007.10.005
![]() |
[10] | Kousteni S, Bellido T, Plotkin LI, et al. (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity. Cell 104: 719–730. |
[11] |
Hamdi MM, Mutungi G (2010) Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intract mouse skeletal muscle fibres. J Physiol 588: 511–525. doi: 10.1113/jphysiol.2009.182162
![]() |
[12] |
Michels G, Hoppe UC (2008) Rapid actions of androgens. Front Neuroendocrinol 29: 182–198. doi: 10.1016/j.yfrne.2007.08.004
![]() |
[13] |
Norman AW, Mizwicki MT, Norman DP (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3: 27–41. doi: 10.1038/nrd1283
![]() |
[14] |
Rahman F, Christian HC (2007) Non-classical actions of testosterone: an update. Trends Endocrinol Metab 18: 371–378. doi: 10.1016/j.tem.2007.09.004
![]() |
[15] |
Losel RM, Falkenstein E, Feuring M, et al. (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83: 965–1016. doi: 10.1152/physrev.00003.2003
![]() |
[16] |
Mayer M, Rosen F (1977) Interaction of glucocorticoids and androgens with skeletal muscle. Metabolism 26: 937–962. doi: 10.1016/0026-0495(77)90013-0
![]() |
[17] |
Nicolaides NC, Galata Z, Kino T, et al. (2010) The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75: 1–12. doi: 10.1016/j.steroids.2009.09.002
![]() |
[18] | Schaaf M, Cidlowski J (2003) Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83: 37–48. |
[19] |
Schoneveld OJ, Gaemers IC, Lamers WH (2004) Mechanisms of glucocorticoid signalling. Biochim Biophys Acta 1680: 114–128. doi: 10.1016/j.bbaexp.2004.09.004
![]() |
[20] |
Bhasin S, Storer TW, Berman N, et al. (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335: 1–7. doi: 10.1056/NEJM199607043350101
![]() |
[21] |
Gorelick-Feldman J, Maclean D, Ilic N, et al. (2008) Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem 56: 3532–3537. doi: 10.1021/jf073059z
![]() |
[22] |
van Amsterdam J, Opperhuizen A, Hartgens F (2010) Adverse health effects of anabolic-androgenic steroids. Regul Toxicol Pharmacol 57: 117–123. doi: 10.1016/j.yrtph.2010.02.001
![]() |
[23] | Mottram DR, George AJ (2000) Anabolic steroids. Baillieres Best Pract Res Clin Endocrinol Metab 14: 55–69. |
[24] |
Achar S, Rostamian A, Narayan SM (2010) Cardiac and metabolic effects of anabolic-androgenic steroid abuse on lipids, blood pressure, left ventricular dimensions, and rhythm. Am J Cardiol 106: 893–901. doi: 10.1016/j.amjcard.2010.05.013
![]() |
[25] |
Herlitz LC, Markowitz GS, Farris AB, et al. (2010) Development of focal segmental glomerulosclerosis after anabolic steroid abuse. J Am Soc Nephrol 21: 163–172. doi: 10.1681/ASN.2009040450
![]() |
[26] |
Choi SM, Lee BM (2015) Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids. Expert Opin Drug Saf 14: 1773–1785. doi: 10.1517/14740338.2015.1094052
![]() |
[27] |
Kicman AT, Gower DB (2003) Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann Clin Biochem 40: 321–356. doi: 10.1258/000456303766476977
![]() |
[28] |
Basaria S (2010) Androgen abuse in athletes: detection and consequences. J Clin Endocrinol Metab 95: 1533–1543. doi: 10.1210/jc.2009-1579
![]() |
[29] |
Christou MA, Christou PA, Markozannes G, et al. (2017) Effects of Anabolic Androgenic Steroids on the Reproductive System of Athletes and Recreational Users: A Systematic Review and Meta-Analysis. Sports Med 47: 1869–1883. doi: 10.1007/s40279-017-0709-z
![]() |
[30] |
Rahnema CD, Lipshultz LI, Crosnoe LE, et al. (2014) Anabolic steroid-induced hypogonadism: diagnosis and treatment. Fertil Steril 101: 1271–1279. doi: 10.1016/j.fertnstert.2014.02.002
![]() |
[31] |
Nieschlag E, Vorona E (2015) Doping with anabolic androgenic steroids (AAS): Adverse effects on non-reproductive organs and functions. Rev Endocr Metab Disord 16: 199–211. doi: 10.1007/s11154-015-9320-5
![]() |
[32] |
Vasconsuelo A, Milanesi L, Boland R (2008) 17Beta-estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol 196: 385–397. doi: 10.1677/JOE-07-0250
![]() |
[33] |
Parr MK, Zhao P, Haupt O, et al. (2014) Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone. Mol Nutr Food Res 58: 1861–1872. doi: 10.1002/mnfr.201300806
![]() |
[34] |
Weigt C, Hertrampf T, Zoth N, et al. (2012) Impact of estradiol, ER subtype specific agonists and genistein on energy homeostasis in a rat model of nutrition induced obesity. Mol Cell Endocrinol 351: 227–238. doi: 10.1016/j.mce.2011.12.013
![]() |
[35] |
Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154: 557–568. doi: 10.1038/bjp.2008.153
![]() |
[36] |
Enmark E, Gustafsson JA (1999) Oestrogen receptors - an overview. J Intern Med 246: 133–138. doi: 10.1046/j.1365-2796.1999.00545.x
![]() |
[37] |
Weigt C, Hertrampf T, Kluxen FM, et al. (2013) Molecular effects of ER alpha- and beta-selective agonists on regulation of energy homeostasis in obese female Wistar rats. Mol Cell Endocrinol 377: 147–158. doi: 10.1016/j.mce.2013.07.007
![]() |
[38] |
Lazovic G, Radivojevic U, Milosevic V, et al. (2007) Tibolone and osteoporosis. Arch Gynecol Obstet 276: 577–581. doi: 10.1007/s00404-007-0387-4
![]() |
[39] |
Narayanan R, Coss CC, Dalton JT (2018) Development of selective androgen receptor modulators (SARMs). Mol Cell Endocrinol 465: 134–142. doi: 10.1016/j.mce.2017.06.013
![]() |
[40] |
Gao WQ, Dalton JT (2007) Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Drug Discovery Today 12: 241–248. doi: 10.1016/j.drudis.2007.01.003
![]() |
[41] | Choo JJ, Horan MA, Little RA, et al. (1992) Anabolic effects of clenbuterol on skeletal muscle are mediated by beta 2-adrenoceptor activation. Am J Physiol 263: E50–56. |
[42] | Moore N, Pegg G, Sillence M (1994) Anabolic effects of the beta2-andrenoceptor agonist salmeterol are dependent on route of administration. Am J Physiol 267: E475–E484. |
[43] |
Barbosa J, Cruz C, Martins J, et al. (2005) Food poisoning by clenbuterol in Portugal. Food Addit Contam 22: 563–566. doi: 10.1080/02652030500135102
![]() |
[44] |
Brambilla G, Cenci T, Franconi F, et al. (2000) Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett 114: 47–53. doi: 10.1016/S0378-4274(99)00270-2
![]() |
[45] | Sporano V, Grasso L, Esposito M, et al. (1998) Clenbuterol residues in non-liver containing meat as a cause of collective food poisoning. Vet Hum Toxicol 40: 141–143. |
[46] | Brambilla G, Loizzo A, Fontana L, et al. (1997) Food poisoning following consumption of clenbuterol-treated veal in Italy. JAMA, J Am Med Assoc 278: 635. |
[47] | Pulce C, Lamaison D, Keck G, et al. (1991) Collective human food poisonings by clenbuterol residues in veal liver. Vet Hum Toxicol 33: 480–481. |
[48] | Salleras L, Dominguez A, Mata E, et al. (1995) Epidemiologic study of an outbreak of clenbuterol poisoning in Catalonia, Spain. Public Health Rep 110: 338–342. |
[49] | Martinez-Navarro JF (1990) Food poisoning related to consumption of illicit beta-agonist in liver. Lancet 336: 1311. |
[50] |
Parr MK, Blokland MH, Liebetrau F, et al. (2017) Distinction of clenbuterol intake from drug or contaminated food of animal origin in a controlled administration trial - the potential of enantiomeric separation for doping control analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34: 525–535. doi: 10.1080/19440049.2016.1242169
![]() |
[51] |
Parr MK, Opfermann G, Schanzer W (2009) Analytical methods for the detection of clenbuterol. Bioanalysis 1: 437–450. doi: 10.4155/bio.09.29
![]() |
[52] |
Mersmann HJ (1998) Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci 76: 160–172. doi: 10.2527/1998.761160x
![]() |
[53] | World Anti-Doping Agency (2017) The 2018 Prohibited List. World Anti-Doping Agency. |
[54] |
Serra C, Bhasin S, Tangherlini F, et al. (2011) The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology 152: 193–206. doi: 10.1210/en.2010-0802
![]() |
[55] |
Rommel C, Bodine SC, Clarke BA, et al. (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009–1013. doi: 10.1038/ncb1101-1009
![]() |
[56] |
Bolster DR, Jefferson LS, Kimball SR (2004) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63: 351–356. doi: 10.1079/PNS2004355
![]() |
[57] |
Holecek M (2017) Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 8: 529–541. doi: 10.1002/jcsm.12208
![]() |
[58] |
Thomas M, Langley B, Berry C, et al. (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275: 40235–40243. doi: 10.1074/jbc.M004356200
![]() |
[59] |
Schuelke M, Wagner KR, Stolz LE, et al. (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350: 2682–2688. doi: 10.1056/NEJMoa040933
![]() |
[60] |
McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90. doi: 10.1038/387083a0
![]() |
[61] | Rı́os R, Carneiro I, Arce VM, et al. (2002) Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 282: C993–C999. |
[62] |
Sharma M, Langley B, Bass J, et al. (2001) Myostatin in muscle growth and repair. Exerc Sport Sci Rev 29: 155–158. doi: 10.1097/00003677-200110000-00004
![]() |
[63] |
Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7: 310–315. doi: 10.1016/j.coph.2006.11.011
![]() |
[64] |
Elliott B, Renshaw D, Getting S, et al. (2012) The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol 205: 324–340. doi: 10.1111/j.1748-1716.2012.02423.x
![]() |
[65] |
Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, et al. (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95: 14938–14943. doi: 10.1073/pnas.95.25.14938
![]() |
[66] |
Pearen MA, Ryall JG, Maxwell MA, et al. (2006) The orphan nuclear receptor, NOR-1, is a target of beta-adrenergic signaling in skeletal muscle. Endocrinology 147: 5217–5227. doi: 10.1210/en.2006-0447
![]() |
[67] |
Ma K, Mallidis C, Bhasin S, et al. (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285: E363–E371. doi: 10.1152/ajpendo.00487.2002
![]() |
[68] |
Chen PR, Lee K (2016) INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development. J Anim Sci 94: 3125–3134. doi: 10.2527/jas.2016-0532
![]() |
[69] |
Dschietzig TB (2014) Myostatin - From the Mighty Mouse to cardiovascular disease and cachexia. Clin Chim Acta 433: 216–224. doi: 10.1016/j.cca.2014.03.021
![]() |
[70] |
Kung T, Springer J, Doehner W, et al. (2010) Novel treatment approaches to cachexia and sarcopenia: highlights from the 5th Cachexia Conference. Expert Opin Investig Drugs 19: 579–585. doi: 10.1517/13543781003724690
![]() |
[71] |
Rodgers BD, Garikipati DK (2008) Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr Rev 29: 513–534. doi: 10.1210/er.2008-0003
![]() |
[72] |
Marchitelli C, Savarese MC, Crisa A, et al. (2003) Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mammalian Genome 14: 392–395. doi: 10.1007/s00335-002-2176-5
![]() |
[73] |
Bellinge RH, Liberles DA, Iaschi SP, et al. (2005) Myostatin and its implications on animal breeding: a review. Anim Genet 36: 1–6. doi: 10.1111/j.1365-2052.2004.01229.x
![]() |
[74] | Arnold H, Della-Fera M, Baile C (2001) Review of myostatin history, physiology and applications. Int Arch Biosci 1: 1014–1022. |
[75] |
Lee YS, Lehar A, Sebald S, et al. (2015) Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy. Hum Mol Genet 24: 5711–5719. doi: 10.1093/hmg/ddv288
![]() |
[76] | Bhasin S, Storer TW (2009) Anabolic applications of androgens for functional limitations associated with aging and chronic illness. Front Horm Res 37: 163–182. |
[77] |
Dobs AS, Boccia RV, Croot CC, et al. (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14: 335–345. doi: 10.1016/S1470-2045(13)70055-X
![]() |
[78] |
Dillon EL, Durham WJ, Urban RJ, et al. (2010) Hormone treatment and muscle anabolism during aging: androgens. Clin Nutr 29: 697–700. doi: 10.1016/j.clnu.2010.03.010
![]() |
[79] |
Madeddu C, Maccio A, Mantovani G (2012) Multitargeted treatment of cancer cachexia. Crit Rev Oncog 17: 305–314. doi: 10.1615/CritRevOncog.v17.i3.80
![]() |
[80] |
Ebner N, Springer J, Kalantar-Zadeh K, et al. (2013) Mechanism and novel therapeutic approaches to wasting in chronic disease. Maturitas 75: 199–206. doi: 10.1016/j.maturitas.2013.03.014
![]() |
[81] |
Jasuja R, LeBrasseur NK (2014) Regenerating skeletal muscle in the face of aging and disease. Am J Phys Med Rehabil 93: S88–96. doi: 10.1097/PHM.0000000000000118
![]() |
[82] |
Madeddu C, Mantovani G, Gramignano G, et al. (2015) Advances in pharmacologic strategies for cancer cachexia. Expert Opin Pharmacother 16: 2163–2177. doi: 10.1517/14656566.2015.1079621
![]() |
[83] |
Srinath R, Dobs A (2014) Enobosarm (GTx-024, S-22): a potential treatment for cachexia. Future Oncol 10: 187–194. doi: 10.2217/fon.13.273
![]() |
[84] |
Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93: 137-188. doi: 10.1152/physrev.00045.2011
![]() |
[85] | Abdul-Ghani MA, DeFronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010: 476279. |
[86] |
Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulatros: An overview. Endocr Rev 23: 175–200. doi: 10.1210/edrv.23.2.0460
![]() |
[87] |
Hengevoss J, Piechotta M, Muller D, et al. (2015) Combined effects of androgen anabolic steroids and physical activity on the hypothalamic-pituitary-gonadal axis. J Steroid Biochem Mol Biol 150: 86–96. doi: 10.1016/j.jsbmb.2015.03.003
![]() |
[88] | Murthy KS, Zhou H, Grider JR, et al. (2003) Inhibition of sustained smooth muscle contraction byPKA and PKG preferentially mediated by phosphorylation of RhoA. Am J Physiol Gastrointest Liver Physiol 284: G1006–1016. |
[89] |
Mahabadi V, Amory JK, Swerdloff RS, et al. (2009) Combined transdermal testosterone gel and the progestin nestorone suppresses serum gonadotropins in men. J Clin Endocrinol Metab 94: 2313–2320. doi: 10.1210/jc.2008-2604
![]() |
[90] |
Bonsall RW, Rees HD, Michael RP (1985) The distribution, nuclear uptake and metabolism of [3H]dihydrotestosterone in the brain, pituitary gland and genital tract of the male rhesus monkey. J Steroid Biochem 23: 389–398. doi: 10.1016/0022-4731(85)90184-0
![]() |
[91] |
Bonsall RW, Rees HD, Michael RP (1983) Characterization by high performance liquid chromatography of nuclear metabolites of testosterone in the brains of male rhesus monkeys. Life Sci 33: 655–663. doi: 10.1016/0024-3205(83)90254-0
![]() |
[92] |
Tilbrook AJ, Clarke IJ (2001) Negative feedback regulation of the secretion and actions of gonadotropin-releasing hormone in males. Biol Reprod 64: 735–742. doi: 10.1095/biolreprod64.3.735
![]() |
[93] | Alen M, Reinila M, Vihko R (1985) Response of serum hormones to androgen administration in power athletes. Med Sci Sports Exerc 17: 354–359. |
[94] |
Smith CL, O'Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25: 45–71. doi: 10.1210/er.2003-0023
![]() |
[95] |
McEwan IJ (2013) Androgen receptor modulators: a marriage of chemistry and biology. Future Med Chem 5: 1109–1120. doi: 10.4155/fmc.13.69
![]() |
[96] |
Narayanan R, Coss CC, Yepuru M, et al. (2008) Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways. Mol Endocrinol 22: 2448–2465. doi: 10.1210/me.2008-0160
![]() |
[97] |
Skelton DA, Phillips SK, Bruce SA, et al. (1999) Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausal women. Clin Sci 96: 357–364. doi: 10.1042/cs0960357
![]() |
[98] | Heikkinen J, Kyllonen E, Kurttila-Matero E, et al. (1997) HRT and exercise: effects on bone density, muscle strength and lipid metabolism. A placebo controlled 2-year prospective trial on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas 26: 139–149. |
[99] |
Glenmark B, Nilsson M, Gao H, et al. (2004) Difference in skeletal muscle function in males vs. females: role of estrogen receptor-beta. Am J Physiol Endocrinol Metab 287: E1125–1131. doi: 10.1152/ajpendo.00098.2004
![]() |
[100] |
Velders M, Schleipen B, Fritzemeier KH, et al. (2012) Selective estrogen receptor-beta activation stimulates skeletal muscle growth and regeneration. FASEB J 26: 1909–1920. doi: 10.1096/fj.11-194779
![]() |
[101] |
Harris HA, Albert LM, Leathurby Y, et al. (2003) Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 144: 4241–4249. doi: 10.1210/en.2003-0550
![]() |
[102] |
Martin C, Ross M, Chapman KE, et al. (2004) CYP7B generates a selective estrogen receptor beta agonist in human prostate. J Clin Endocrinol Metab 89: 2928–2935. doi: 10.1210/jc.2003-031847
![]() |
[103] |
Harris HA, Bruner-Tran KL, Zhang X, et al. (2005) A selective estrogen receptor-beta agonist causes lesion regression in an experimentally induced model of endometriosis. Hum Reprod 20: 936–941. doi: 10.1093/humrep/deh711
![]() |
[104] |
Norman BH, Dodge JA, Richardson TI, et al. (2006) Benzopyrans are selective estrogen receptor beta agonists with novel activity in models of benign prostatic hyperplasia. J Med Chem 49: 6155–6157. doi: 10.1021/jm060491j
![]() |
[105] |
Mersereau JE, Levy N, Staub RE, et al. (2008) Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol Cell Endocrinol 283: 49–57. doi: 10.1016/j.mce.2007.11.020
![]() |
[106] |
Piu F, Cheevers C, Hyldtoft L, et al. (2008) Broad modulation of neuropathic pain states by a selective estrogen receptor beta agonist. Eur J Pharmacol 590: 423–429. doi: 10.1016/j.ejphar.2008.05.015
![]() |
[107] | Stovall DW, Pinkerton JV (2009) MF-101, an estrogen receptor beta agonist for the treatment of vasomotor symptoms in peri- and postmenopausal women. Curr Opin Investig Drugs 10: 365–371. |
[108] |
Roman-Blas JA, Castaneda S, Cutolo M, et al. (2010) Efficacy and safety of a selective estrogen receptor beta agonist, ERB-041, in patients with rheumatoid arthritis: a 12-week, randomized, placebo-controlled, phase II study. Arthritis Care Res 62: 1588–1593. doi: 10.1002/acr.20275
![]() |
[109] |
Robb EL, Stuart JA (2011) Resveratrol interacts with estrogen receptor-beta to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase. Free Radic Biol Med 50: 821–831. doi: 10.1016/j.freeradbiomed.2010.12.038
![]() |
[110] | Tagliaferri MA, Tagliaferri MC, Creasman JM, et al. (2016) A Selective Estrogen Receptor Beta Agonist for the Treatment of Hot Flushes: Phase 2 Clinical Trial. J Altern Complement Med 22: 722–728. |
[111] |
Leitman DC, Christians U (2012) MF101: a multi-component botanical selective estrogen receptor beta modulator for the treatment of menopausal vasomotor symptoms. Expert Opin Investig Drugs 21: 1031–1042. doi: 10.1517/13543784.2012.685652
![]() |
[112] |
Jackson RL, Greiwe JS, Schwen RJ (2011) Emerging evidence of the health benefits of S-equol, an estrogen receptor beta agonist. Nutr Rev 69: 432–448. doi: 10.1111/j.1753-4887.2011.00400.x
![]() |
[113] |
Weiser MJ, Wu TJ, Handa RJ (2009) Estrogen receptor-beta agonist diarylpropionitrile: biological activities of R- and S-enantiomers on behavior and hormonal response to stress. Endocrinology 150: 1817–1825. doi: 10.1210/en.2008-1355
![]() |
[114] |
Amer DA, Kretzschmar G, Muller N, et al. (2010) Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line. J Steroid Biochem Mol Biol 120: 208–217. doi: 10.1016/j.jsbmb.2010.04.018
![]() |
[115] | Moutsatsou P (2007) The spectrum of phytoestrogens in nature: our knowledge is expanding. Hormones 6: 173–193. |
[116] |
Arias-Loza PA, Hu K, Dienesch C, et al. (2007) Both estrogen receptor subtypes, alpha and beta, attenuate cardiovascular remodeling in aldosterone salt-treated rats. Hypertension 50: 432–438. doi: 10.1161/HYPERTENSIONAHA.106.084798
![]() |
[117] |
Sun J, Baudry J, Katzenellenbogen JA, et al. (2003) Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile. Mol Endocrinol 17: 247–258. doi: 10.1210/me.2002-0341
![]() |
[118] |
Escande A, Pillon A, Servant N, et al. (2006) Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochem Pharmacol 71: 1459–1469. doi: 10.1016/j.bcp.2006.02.002
![]() |
[119] |
Ogawa M, Kitano T, Kawata N, et al. (2017) Daidzein down-regulates ubiquitin-specific protease 19 expression through estrogen receptor beta and increases skeletal muscle mass in young female mice. J Nutr Biochem 49: 63–70. doi: 10.1016/j.jnutbio.2017.07.017
![]() |
[120] |
Choi SY, Ha TY, Ahn JY, et al. (2008) Estrogenic activities of isoflavones and flavones and their structure-activity relationships. Planta Med 74: 25–32. doi: 10.1055/s-2007-993760
![]() |
[121] |
Zierau O, Kolba S, Olff S, et al. (2006) Analysis of the promoter-specific estrogenic potency of the phytoestrogens genistein, daidzein and coumestrol. Planta Med 72: 184–186. doi: 10.1055/s-2005-873182
![]() |
[122] | Parr MK, Botre F, Nass A, et al. (2015) Ecdysteroids: A novel class of anabolic agents? Biol Sport 32: 169–173. |
[123] |
Kohara A, Machida M, Setoguchi Y, et al. (2017) Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice. J Int Soc Sports Nutr 14: 32. doi: 10.1186/s12970-017-0190-y
![]() |
[124] |
Foryst-Ludwig A, Clemenz M, Hohmann S, et al. (2008) Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma. PLoS Genet 4: e1000108. doi: 10.1371/journal.pgen.1000108
![]() |
[125] |
Semple RK, Chatterjee VK, O'Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116: 581–589. doi: 10.1172/JCI28003
![]() |
[126] |
Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974–1984. doi: 10.1016/j.biocel.2005.04.018
![]() |
[127] |
Bodine SC, Stitt TN, Gonzalez M, et al. (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014–1019. doi: 10.1038/ncb1101-1014
![]() |
[128] |
Wang M, Wang Y, Weil B, et al. (2009) Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 296: R972–978. doi: 10.1152/ajpregu.00045.2009
![]() |
[129] |
Stitt TN, Drujan D, Clarke BA, et al. (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 395–403. doi: 10.1016/S1097-2765(04)00211-4
![]() |
[130] |
Guttdrige D (2004) Signaling pathways weigh in on decisions to make or break skeletal muscle. Curr Opin Clin Nutr Metab Care 7: 443–450. doi: 10.1097/01.mco.0000134364.61406.26
![]() |
[131] |
Nader GA (2005) Molecular determinants of skeletal muscle mass: getting the "AKT" together. Int J Biochem Cell Biol 37: 1985–1996. doi: 10.1016/j.biocel.2005.02.026
![]() |
[132] |
Glass DJ (2010) Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 13: 225–229. doi: 10.1097/MCO.0b013e32833862df
![]() |
[133] |
Song YH, Godard M, Li Y, et al. (2005) Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J Investig Med 53: 135–142. doi: 10.2310/6650.2005.00309
![]() |
[134] |
Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5: 87–90. doi: 10.1038/ncb0203-87
![]() |
[135] |
Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1: 4. doi: 10.1186/2044-5040-1-4
![]() |
[136] |
Lux MP, Fasching PA, Schrauder MG, et al. (2016) The PI3K Pathway: Background and Treatment Approaches. Breast Care 11: 398–404. doi: 10.1159/000453133
![]() |
[137] |
MacLennan P, Edwards R (1989) Effects of clenbuterol and propanolol on muscle mass. Biochem J 264: 573–579. doi: 10.1042/bj2640573
![]() |
[138] | Schmidt P, Holsboer F, Spengler D (2001) β2-Adrenergic Receptors Potentiate Glucocorticoid Receptor Transactivation via G Proteinβγ-Subunits and the Phosphoinositide 3-Kinase Pathway. Mol Endocrinol 15: 553–564. |
[139] |
Murga C, Laguinge L, Wetzker R, et al. (1998) Activation of Akt/Protein Kinase B by G Protein-coupled Receptors A ROLE FOR α AND βγ SUBUNITS OF HETEROTRIMERIC G PROTEINS ACTING THROUGH PHOSPHATIDYLINOSITOL-3-OH KINASEγ. J Biol Chem 273: 19080–19085. doi: 10.1074/jbc.273.30.19080
![]() |
[140] | Huang P, Li Y, Lv Z, et al. (2017) Comprehensive attenuation of IL-25-induced airway hyperresponsiveness, inflammation and remodelling by the PI3K inhibitor LY294002. Respirology 22: 78–85. |
[141] |
Welle S, Burgess K, Mehta S (2009) Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab 296: E567–572. doi: 10.1152/ajpendo.90862.2008
![]() |
[142] |
Jefferies HB, Fumagalli S, Dennis PB, et al. (1997) Rapamycin suppresses 5' TOP mRNA translation through inhibition of p70 s6k. EMBO J 16: 3693–3704. doi: 10.1093/emboj/16.12.3693
![]() |
[143] | Beretta L, Gingras AC, Svitkin YV, et al. (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15: 658–664. |
[144] |
Sneddon AA, Delday MI, Steven J, et al. (2001) Elevated IGF-II mRNA and phosphorylation of 4E-BP1 and p70S6k in muscle showing clenbuterol-induced anabolism. Am J Physiol Endocrinol Metab 281: E676–E682. doi: 10.1152/ajpendo.2001.281.4.E676
![]() |
[145] |
Bodine SC, Latres E, Baumhueter S, et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704–1708. doi: 10.1126/science.1065874
![]() |
[146] |
Kline WO, Panaro FJ, Yang H, et al. (2007) Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol (1985) 102: 740–747. doi: 10.1152/japplphysiol.00873.2006
![]() |
[147] |
Okumura S, Fujita T, Cai W, et al. (2014) Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 124: 2785–2801. doi: 10.1172/JCI64784
![]() |
[148] |
Ohnuki Y, Umeki D, Mototani Y, et al. (2014) Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by beta2-adrenoceptor stimulation. J Physiol 592: 5461–5475. doi: 10.1113/jphysiol.2014.282996
![]() |
[149] | Ohnuki Y, Umeki D, Mototani Y, et al. (2016) Role of phosphodiesterase 4 expression in the Epac1 signaling-dependent skeletal muscle hypertrophic action of clenbuterol. Physiol Rep 4. |
[150] |
Burnett DD, Paulk CB, Tokach MD, et al. (2016) Effects of Added Zinc on Skeletal Muscle Morphometrics and Gene Expression of Finishing Pigs Fed Ractopamine-HCL. Anim Biotechnol 27: 17–29. doi: 10.1080/10495398.2015.1069301
![]() |
[151] |
Py G, Ramonatxo C, Sirvent P, et al. (2015) Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery. J Physiol 593: 2071–2084. doi: 10.1113/jphysiol.2014.287060
![]() |
[152] |
Rena G, Guo S, Cichy SC, et al. (1999) Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274: 17179–17183. doi: 10.1074/jbc.274.24.17179
![]() |
[153] |
Biggs WH, 3rd, Meisenhelder J, Hunter T, et al. (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96: 7421–7426. doi: 10.1073/pnas.96.13.7421
![]() |
[154] |
Umeki D, Ohnuki Y, Mototani Y, et al. (2015) Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition. PLoS One 10: e0128263. doi: 10.1371/journal.pone.0128263
![]() |
[155] |
de Palma L, Marinelli M, Pavan M, et al. (2008) Ubiquitin ligases MuRF1 and MAFbx in human skeletal muscle atrophy. Joint Bone Spine 75: 53–57. doi: 10.1016/j.jbspin.2007.04.019
![]() |
[156] |
Gomez-SanMiguel AB, Gomez-Moreira C, Nieto-Bona MP, et al. (2016) Formoterol decreases muscle wasting as well as inflammation in the rat model of rheumatoid arthritis. Am J Physiol Endocrinol Metab 310: E925–937. doi: 10.1152/ajpendo.00503.2015
![]() |
[157] |
Jesinkey SR, Korrapati MC, Rasbach KA, et al. (2014) Atomoxetine prevents dexamethasone-induced skeletal muscle atrophy in mice. J Pharmacol Exp Ther 351: 663–673. doi: 10.1124/jpet.114.217380
![]() |
[158] |
Yang YT, McElligott MA (1989) Multiple actions of beta-adrenergic agonists on skeletal muscle and adipose tissue. Biochem J 261: 1–10. doi: 10.1042/bj2610001
![]() |
[159] |
Peterla TA, Scanes CG (1990) Effect of beta-adrenergic agonists on lipolysis and lipogenesis by porcine adipose tissue in vitro. J Anim Sci 68: 1024–1029. doi: 10.2527/1990.6841024x
![]() |
[160] | Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2: 599–609. |
[161] |
Pearen MA, Myers SA, Raichur S, et al. (2008) The orphan nuclear receptor, NOR-1, a target of beta-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 149: 2853–2865. doi: 10.1210/en.2007-1202
![]() |
[162] |
Martinez JA, Portillo MP, Larralde J (1991) Anabolic actions of a mixed beta-adrenergic agonist on nitrogen retention and protein turnover. Horm Metab Res 23: 590–593. doi: 10.1055/s-2007-1003762
![]() |
[163] |
Watkins LE, Jones DJ, Mowrey DH, et al. (1990) The Effect of Various Levels of Ractopamine Hydrochloride on the Performance and Carcass Characteristics of Finishing Swine. J Anim Sci 68: 3588–3595. doi: 10.2527/1990.68113588x
![]() |
[164] |
Crome PK, McKeith FK, Carr TR, et al. (1996) Effect of ractopamine on growth performance, carcass composition, and cutting yields of pigs slaughtered at 107 and 125 kilograms. J Anim Sci 74: 709–716. doi: 10.2527/1996.744709x
![]() |
[165] |
Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Applied Physiol 81: 2509–2516. doi: 10.1152/jappl.1996.81.6.2509
![]() |
[166] |
Adams GR (2002) Invited Review: Autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol 93: 1159–1167. doi: 10.1152/japplphysiol.01264.2001
![]() |
[167] |
Grounds MD (2002) Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 3: 19–24. doi: 10.1023/A:1015234709314
![]() |
[168] |
Kicman AT, Miell JP, Teale JD, et al. (1997) Serum IGF-I and IGF binding proteins 2 and 3 as potential markers of doping with human GH. Clin Endocrinol 47: 43–50. doi: 10.1046/j.1365-2265.1997.2111036.x
![]() |
[169] |
Bahl N, Stone G, McLean M, et al. (2018) Decorin, a growth hormone-regulated protein in humans. Eur J Endocrinol 178: 147–154. doi: 10.1530/EJE-17-0844
![]() |
[170] |
Kanzleiter T, Rath M, Gorgens SW, et al. (2014) The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 450: 1089–1094. doi: 10.1016/j.bbrc.2014.06.123
![]() |
[171] |
Musaro A, McCullagh K, Paul A, et al. (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27: 195–200. doi: 10.1038/84839
![]() |
[172] |
Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84: 1716–1722. doi: 10.1152/jappl.1998.84.5.1716
![]() |
[173] |
Yin HN, Chai JK, Yu YM, et al. (2009) Regulation of signaling pathways downstream of IGF-I/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma 66: 1083–1090. doi: 10.1097/TA.0b013e31817e7420
![]() |
[174] | Jang YJ, Son HJ, Choi YM, et al. (2017) Apigenin enhances skeletal muscle hypertrophy and myoblast differentiation by regulating Prmt7. Oncotarget 8: 78300–78311. |
[175] |
Song YH, Li Y, Du J, et al. (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115: 451–458. doi: 10.1172/JCI22324
![]() |
[176] |
LaVigne EK, Jones AK, Londono AS, et al. (2015) Muscle growth in young horses: Effects of age, cytokines, and growth factors. J Anim Sci 93: 5672–5680. doi: 10.2527/jas.2015-9634
![]() |
[177] |
Chin ER, Olson EN, Richardson JA, et al. (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12: 2499–2509. doi: 10.1101/gad.12.16.2499
![]() |
[178] |
Delling U, Tureckova J, Lim HW, et al. (2000) A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 20: 6600–6611. doi: 10.1128/MCB.20.17.6600-6611.2000
![]() |
[179] |
Semsarian C, Wu MJ, Ju YK, et al. (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400: 576–581. doi: 10.1038/23054
![]() |
[180] |
Miyashita T, Takeishi Y, Takahashi H, et al. (2001) Role of calcineurin in insulin-like growth factor-1-induced hypertrophy of cultured adult rat ventricular myocytes. Jpn Circ J 65: 815–819. doi: 10.1253/jcj.65.815
![]() |
[181] |
Musaro A, McCullagh KJA, Naya FJ, et al. (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400: 581–585. doi: 10.1038/23060
![]() |
[182] |
Swoap SJ, Hunter RB, Stevenson EJ, et al. (2000) The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol 279: C915–C924. doi: 10.1152/ajpcell.2000.279.4.C915
![]() |
[183] |
White TA, LeBrasseur NK (2014) Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology 60: 289–293. doi: 10.1159/000356740
![]() |
[184] |
Patel K, Amthor H (2005) The function of Myostatin and strategies of Myostatin bloackde - new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscular Disord 15: 117–126. doi: 10.1016/j.nmd.2004.10.018
![]() |
[185] |
Sartori R, Milan G, Patron M, et al. (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296: C1248–1257. doi: 10.1152/ajpcell.00104.2009
![]() |
[186] |
Smith RC, Lin BK (2013) Moystatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care 7: 352–360. doi: 10.1097/SPC.0000000000000013
![]() |
[187] |
Winbanks CE, Weeks KL, Thomson RE, et al. (2012) Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol 197: 997–1008. doi: 10.1083/jcb.201109091
![]() |
[188] |
Winbanks CE, Chen JL, Qian H, et al. (2013) The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203: 345–357. doi: 10.1083/jcb.201211134
![]() |
[189] |
Barbe C, Kalista S, Loumaye A, et al. (2015) Role of IGF-I in follistatin-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 309: E557–567. doi: 10.1152/ajpendo.00098.2015
![]() |
[190] |
Wang Q, Guo T, Portas J, et al. (2015) A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice. Int J Biol Sci 11: 199–208. doi: 10.7150/ijbs.10430
![]() |
[191] |
Barreiro E, Tajbakhsh S (2017) Epigenetic regulation of muscle development. J Muscle Res Cell Motil 38: 31–35. doi: 10.1007/s10974-017-9469-5
![]() |
[192] |
Grazioli E, Dimauro I, Mercatelli N, et al. (2017) Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 18: 802. doi: 10.1186/s12864-017-4193-5
![]() |
[193] |
Saccone V, Puri PL (2010) Epigenetic regulation of skeletal myogenesis. Organogenesis 6: 48–53. doi: 10.4161/org.6.1.11293
![]() |
[194] |
Sincennes MC, Brun CE, Rudnicki MA (2016) Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease. Stem Cells Transl Med 5: 282–290. doi: 10.5966/sctm.2015-0266
![]() |
[195] |
Townley-Tilson WH, Callis TE, Wang D (2010) MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 42: 1252–1255. doi: 10.1016/j.biocel.2009.03.002
![]() |
[196] |
Proctor CJ, Goljanek-Whysall K (2017) Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep 7: 12314. doi: 10.1038/s41598-017-12538-6
![]() |
[197] |
Yu H, Lu Y, Li Z, et al. (2014) microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer. Curr Drug Targets 15: 817–828. doi: 10.2174/1389450115666140627104151
![]() |
1. | Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang, Alexandrov’s Theorem for Anisotropic Capillary Hypersurfaces in the Half-Space, 2023, 247, 0003-9527, 10.1007/s00205-023-01861-0 | |
2. | César Rosales, Compact anisotropic stable hypersurfaces with free boundary in convex solid cones, 2023, 62, 0944-2669, 10.1007/s00526-023-02528-0 |