Citation: L. Galgani. Foundations of physics in Milan, Padua and Paris. Newtonian trajectories from celestial mechanics to atomic physics[J]. Mathematics in Engineering, 2021, 3(6): 1-24. doi: 10.3934/mine.2021045
[1] | D. Bambusi, Galerkin averaging method and Poincaré normal form for some quasilinesr PDEs, Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV (2005), 669-702. |
[2] | D. Bambusi, B. Langella, A C^{∞} Nekhoroshev theorem, Mathematics in Engineering, 3 (2020), 1-17. |
[3] | D. Bambusi, A. Ponno, On metastability in FPU, Commun. Math. Phys., 264 (2006), 539-561. |
[4] | G. Benettin, The elements of Hamiltonian perturbation theory, In: D. Benest, C. Froesché, E. Lega, Hamiltonian systems and frequency analysis, Cambridge Sci. Pub., 2004. |
[5] | G. Benettin, A. Carati, L. Galgani, A. Giorgilli, The Fermi-Pasta-Ulam problem and the metastability perspective, Berlin: Springer, 2007. |
[6] | G. Benettin, H. Christodoulidi, A. Ponno, The Fermi-Pasta-Ulam problem and its underlying integrable dynamics, J. Stat. Phys., 152 (2013), 195-212. |
[7] | G. Benettin, F. Fassò, Fast rotations of the symmetric rigid body: A general study by Hamiltonian perturbation theory. Part I, Nonlinearity, 9 (1996), 137-186. |
[8] | G. Benettin, F. Fassò, M. Guzzo, Fast rotations of the symmetric rigid body: A study by Hamiltonian perturbation theory. Part Ⅱ, Gyroscopic rotations, Nonlinearity, 10 (1997), 1695-1717. |
[9] | G. Benettin, F. Fassò, M. Guzzo, Nekhoroshev-stability of L4 and L5 in the spatial restricted three-body problem, Regul. Chaotic Dyn., 3 (1998), 56-72. |
[10] | G. Benettin, F. Fassò, M. Guzzo, Long term stability of proper rotations of the perturbed Euler rigid body, Commun. Math. Phys., 250 (2004), 133-160. |
[11] | G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory — Part 2: Numerical application, Meccanica, 15 (1980), 9-30. |
[12] | G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Il Nuovo Cimento B, 79 (1984), 201-223. |
[13] | G. Benettin, L. Galgani, A. Giorgilli, A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems, Cel. Mech., 37 (1985), 1-25. |
[14] | G. Benettin, L. Galgani, J. M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A, 14 (1976), 2338-2345. |
[15] | G. Benettin, M. Guzzo, V. Marini, Adiabatic chaos in the spin orbit problem, Celest. Mech. Dyn. Astr., 101 (2008), 203. |
[16] | G. Benettin, A. Ponno, Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit, J. Stat. Phys., 144 (2011), 793. |
[17] | G. Benettin, A. Ponno, Understanding the FPU state in FPU-like models, Mathematics in Engineering, 3 (2020), 1-22. |
[18] | L. Berchialla, L. Galgani, A. Giorgilli, Localization of energy in FPU chains, Discrete Cont. Dyn. A, 11 (2004), 855-866. |
[19] | P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, Anharmonic chain with Lennard-Jones interaction, Phys. Rev. A, 1970, 2013-2019. |
[20] | A. Carati, Pair production in classical electrodynamics, Found. Phys., 28 (1998), 843-853. |
[21] | A. Carati, Thermodynamics and time averages, Physica A, 348 (2005), 110-120. |
[22] | A. Carati, On the definition of temperature using time-averages, Physica A, 369 (2006), 417-431. |
[23] | A. Carati, An averaging theorem for Hamiltonian dynamical systems in the thermodynamic limit, J. Stat. Phys., 128 (2007), 1057-1077. |
[24] | A. Carati, F. Benfenati, A. Maiocchi, M. Zuin, L. Galgani, Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime, Chaos, 24 (2014), 013118. |
[25] | A. Carati, S. Cacciatori, L. Galgani, Discrete matter, far fields and dark matter, EPL, 83 (2008), 59002. |
[26] | A. Carati, S. Cacciatori, L. Galgani, Far fields, from electrodynamics to gravitation, and the dark matter problem, In: Chaos in Astronomy. Astrophysics and Space Science Proceedings, Berlin, Heidelberg: Springer, 2008,325-335. |
[27] | A. Carati, L. Galgani, Nonradiating normal modes in a classical many-body model of matterradiation interaction, Il Nuovo Cimento B, 8 (2003), 839-851. |
[28] | A. Carati, L. Galgani, Far fields as a possible substitute for dark matter, In: Chaos, diffusion and nonintegrability in Hamiltonian systems, La Plata, 2012. |
[29] | A. Carati, L. Galgani, Classical microscopic theory of dispersion, emission and absorption of light in dielectrics, Eur. Phys. J. D, 68 (2014), 307. |
[30] | A. Carati, L. Galgani, Progress along the lines of the Einstein Classical Program: An enquiry on the necessity of quantization in light of the modern theory of dynamical systems. Available from: http://www.mat.unimi.it/users/galgani. |
[31] | A. Carati, L. Galgani, F. Gangemi, R. Gangemi, Relaxation times and ergodic properties in a realistic ionic-crystal model, and the modern form of the FPU problem, Physica A, 532 (2019), 121911. |
[32] | A. Carati, L. Galgani, F. Gangemi, R. Gamgemi, Electronic trajectories in atomic physics: The chemical bond in the $H_2.+$ ion, Chaos, 30 (2020), 063109. |
[33] | A. Carati, L. Galgani, A. Giorgilli, The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics, Chaos, 15 (2005), 015105. |
[34] | A. Carati, L. Galgani, A. Maiocchi, F. Gangemi, R. Gangemi, The FPU problem as a statisticalmechanical counterpart of the KAM problem, and its relevance for the foundations of physics, Regul. Chaotic Dyn., 23 (2018), 704-719. |
[35] | A. Carati, L. Galgani, A. Maiocchi, F. Gangemi, R. Gangemi, Classical infrared spectra of ionic crystals and their relevance for statistical mechanics, Physica A, 506 (2018), 1-10. |
[36] | A. Carati, A. Maiocchi, Exponentially long stability times for a nonlinear lattice in the thermodynamic limit, Commun. Math. Phys., 314 (2012), 129-161. |
[37] | A. Carati, M. Zuin, A. Maiocchi, M. Marino, E. Martines, L. Galgani, Transition from order to chaos, and density limit, in magnetized plasmas, Chaos, 22 (2012), 033124. |
[38] | C. Cercignani, L. Galgani, A. Scotti, Zero-point energy in classical non-linear mechanics, Phys. Lett. A, 38 (1972), 403-404. |
[39] | G. Contopoulos, A review of the "Third" integral, Mathematics in Engineering, 2 (2020), 472-511. |
[40] | W. De Roeck, F. Huveneers, Asymptotic localization of energy in nondisordered oscillator chains, Commun. Pure Appl. Math., 68 (2015), 1532-1568. |
[41] | E. Diana, L. Galgani, A. Giorgilli, A. Scotti, On the direct construction of integrals of Hamiltonian systems near an equilibrium point, Boll. U. M. I., 11 (1975), 84-89. |
[42] | T. Erber, Mathematical Reviews MR1652395, 2000a: 78006. |
[43] | F. Fassò, M. Guzzo, G. Benettin, Nekhoroshev stability of elliptic equilibria of Hamiltonian systems, Commun. Math. Phys., 197 (1998), 347-360. |
[44] | L. Galgani, Carlo Cercignani's interests for the foundations of physics, Meccanica, 47 (2012), 1723-1735. |
[45] | L. Galgani, A. Scotti, Planck-like distribution in classical nonlinear mechanics, Phys. Rev. Lett., 28 (1972), 1173-1176. |
[46] | L. Galgani, A. Scotti, Recent progress in classical nolinear dynamics, La Rivista del Nuovo Cimento, 2 (1972), 189-209. |
[47] | F. Gangemi, A. Carati, L. Galgani, R. Gangemi, A. Maiocchi, Agreement of classical Kubo theory with the infrared dispersion curves n(ω) of ionic crystals, EPL, 110 (2015), 47003. |
[48] | C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, Korteweg-devries equation and generalizations. VI. Methods for exact solutions, Commun. Pure Appl. Math., 27 (1974), 97-133. |
[49] | A. Giorgilli, A computer program for integrals of motion, Comput. Phys. Commun., 16 (1979), 331-343. |
[50] | A. Giorgilli, Rigorous results on the power expansions for the integrals of a hamiltonian system near an elliptic equilibrium point, Ann. Inst. H. Poincaré, 48 (1988), 423-439. |
[51] | A. Giorgilli, Perturbation methods in celestial mechanics, In: Satellite dynamics and space missions, Springer INDAM Series, 2019, 51-114. |
[52] | A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simó, Effective stability for a hamiltonian system near an elliptic equilibrium point, with an applicatiion to the restricted three body problem, J. Differ. Equations, 77 (1989), 167-198. |
[53] | A. Giorgilli, L. Galgani, Formal integrals of motions for an autonomous Hamiltonian system near an equilibrium point, Cel. Mech., 17 (1978), 267-280. |
[54] | A. Giorgilli, U. Locatelli, Kolmogorov theorem and classical perturbation theory, Z. Angew. Math. Phys., 48 (1997), 220-261. |
[55] | A. Giorgilli, U. Locatelli, On classical series expansion for quasi-periodic motions, Math. Phys. Electron. J., 3 (1997), 1-25. |
[56] | A. Giorgilli, U. Locatelli, M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Discrete Cont. Dyn. A, 104 (2009), 159-173. |
[57] | A. Giorgilli, U. Locatelli, M. Sansottera, On the convergence of an algorithm constructing of the normal form for lower dimesionality elliptic tori in planetary systems, Discrete Cont. Dyn. A, 119 (2014), 397-424. |
[58] | A. Giorgilli, S. Marmi, Convergence radius in the Poincaré-Siegel problem, Discrete Cont. Dyn. S, 3 (2010), 601-621. |
[59] | A. Giorgilli, S. Paleari, T. Penati, Extensive adiabatic invariants for nonlinear chains, J. Stat. Phys., 148 (2012), 1106-1134. |
[60] | A. Giorgilli, S. Paleari, T. Penati, An extensive adiabatic invariant for the Klein-Gordon model in the thermodynamic limit, Ann. I. H. Poincaré PR, 16 (2015), 897-959. |
[61] | M. Guzzo, L. Chierchia, G. Benettin, The steep Nekhoroshev's theorem, Commun. Math. Phys., 342 (2016), 569-601. |
[62] | M. Guzzo, F. Fassò, G. Benettin, On the stability of elliptic equilibria, Math. Phys. Electron. J., 4 (1998), 1-16. |
[63] | M. Guzzo, A. Morbidelli, Construction of a Nekhoroshev-like result for the asteroid belt dynamical system, Discrete Cont. Dyn. A, 66 (1996), 255-292. |
[64] | A. Lerose, A. Sanzeni, A. Carati, L. Galgani, Classical microscopic theory of polaritons in ionic crystals, Eur. Phys. J. D, 68 (2014), 35. |
[65] | U. Locatelli, A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system, Discrete Cont. Dyn. B, 7 (2007), 377-398. |
[66] | U. Locatelli, A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems, Discrete Cont. Dyn. A, 78 (2000), 47-74. |
[67] | A. Maiocchi, Freezing of the optical-branch energy in a diatomic FPU chain, Commun. Math. Phys., 372 (2019), 91-117. |
[68] | A. Maiocchi, D. Bambusi, A. Carati, An averaging theorem for FPU in the thermodynamic limit, J. Stat. Phys., 155 (2014), 300-322. |
[69] | A. Morbidelli, A. Giorgilli, Superexponential stability of KAM tori, J. Stat. Phys., 78 (1995), 1607-1617. |
[70] | A. Morbidelli, M. Guzzo, The Nekhoroshev thorem and the asteroid belt dynamical system, Discrete Cont. Dyn. A, 65 (1996), 107-136. |
[71] | J. Moser, Mathematical Reviews MR0097508, 20 n. 4066. |
[72] | N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russ. Math. Surv., 32 (1977), 1-65. |
[73] | A. Ponno, L. Galgani, F. Guerra, Analytical estimate of stochasticity thresholds in Fermi-PastaUlam and φ^{4} models, Phys. Rev. E, 61 (2000), 7081-7086. |
[74] | M. Sansottera, A. Giorgilli, T. Carletti, High-order control for symplectic maps, Physica D, 316 (2016), 1-15. |
[75] | P. A. Schilpp, Albert Einstein, Philosopher-scientist, Library of Living Philosophers, Volume VⅡ, Northwestern University, 1949. |
[76] | M. Volpi, U. Locatelli, M. Sansottera, A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems, Discrete Cont. Dyn. A, 130 (2018), 36. |
[77] | J. A. Wheeler, R. P. Feynman, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys., 17 (1945), 157-181. |
[78] | J. A. Wheeler, R. P. Feynman, Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys., 21 (1949), 425-433. |