Citation: Yu Wang, Caroline A. Brown, Rachel Chen. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF)[J]. AIMS Microbiology, 2018, 4(2): 261-273. doi: 10.3934/microbiol.2018.2.261
[1] | Prince Peprah Osei, Ajay Jasra . Estimating option prices using multilevel particle filters. Big Data and Information Analytics, 2018, 3(2): 24-40. doi: 10.3934/bdia.2018005 |
[2] | Marco Tosato, Jianhong Wu . An application of PART to the Football Manager data for players clusters analyses to inform club team formation. Big Data and Information Analytics, 2018, 3(1): 43-54. doi: 10.3934/bdia.2018002 |
[3] | Bill Huajian Yang . Modeling path-dependent state transitions by a recurrent neural network. Big Data and Information Analytics, 2022, 7(0): 1-12. doi: 10.3934/bdia.2022001 |
[4] | John A. Doucette, Robin Cohen . A testbed to enable comparisons between competing approaches for computational social choice. Big Data and Information Analytics, 2016, 1(4): 309-340. doi: 10.3934/bdia.2016013 |
[5] |
Hamzeh Khazaei, Marios Fokaefs, Saeed Zareian, Nasim Beigi-Mohammadi, Brian Ramprasad, Mark Shtern, Purwa Gaikwad, Marin Litoiu .
How do I choose the right NoSQL solution? A comprehensive theoretical and experimental survey . Big Data and Information Analytics, 2016, 1(2): 185-216.
doi: 10.3934/bdia.2016004
|
[6] | Yanshuo Wang . Pattern analysis of continuous analytic wavelet transforms of the COVID19 spreading and death. Big Data and Information Analytics, 2020, 5(1): 29-46. doi: 10.3934/bdia.2020003 |
[7] | Wenxue Huang, Qitian Qiu . Forward Supervised Discretization for Multivariate with Categorical Responses. Big Data and Information Analytics, 2016, 1(2): 217-225. doi: 10.3934/bdia.2016005 |
[8] | Ricky Fok, Agnieszka Lasek, Jiye Li, Aijun An . Modeling daily guest count prediction. Big Data and Information Analytics, 2016, 1(4): 299-308. doi: 10.3934/bdia.2016012 |
[9] | Nick Cercone . What's the Big Deal About Big Data?. Big Data and Information Analytics, 2016, 1(1): 31-79. doi: 10.3934/bdia.2016.1.31 |
[10] | Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen . Big data collection and analysis for manufacturing organisations. Big Data and Information Analytics, 2017, 2(2): 127-139. doi: 10.3934/bdia.2017002 |
Discrete choice models (DCMs) have applications in many areas such as social sciences, health economics, transportation research and health systems (see [18,11,7]). DCMs focus on predicting consumer's choices in products or services. In many cases, they are time dependent but such research has not been implemented in practice. In this manuscript, we apply the models over a time sequence to quantify and measure consumer behavior and derive the utilities using Markov decision processes (MDPs). The change in utilities from the consumer is described. The utility is composed of a systematic component dependent on the key attributes of the product and a random component. [24] presents multiple models based on different assumptions about the distribution of the random component. In some of his suggested models, the error terms are assumed to be homogeneous and uncorrelated [24]. By assuming the covariates are generated under a normal distribution and the error terms under a generalized extreme value distribution, the output data is then modeled as binary and conditional logit. We will focus on the conditional logit assumption, but add a dependence structure through time and transition probabilities under MDPs
DCMs as described by the associated attribute-levels, are modeled at different cases. [12] and [14] provide three cases of the best worst scaling experiments: 1) best-worst object scaling, 2) best-worst attribute-level scaling or profile case and 3) best-worst discrete choice experiments (BWDCEs) or multi-profile case. We are interested in the profile case, also referred to as Case 2 best-worst scaling (BWS).
By scaling the attributes and the attribute-levels, it is possible to determine the utility impact on consumer behavior. We simulate data from [5] experimental design and compute the associated parameter estimates. The results of this simulation are used to project the expected discounted utility over time using MDPs.
The manuscript is organized as follows. In Section 2, we present the model design and properties for attribute-level best-worst experiments. Extensions of MDPs for Case 2 BWS with time dependent factor are provided in Section 3. Simulated data example of Case 2 BWS models over time and results are described in Section 4. A conclusion is provided in Section 5.
Assume we have a sample of
$ Uij=Vij+ϵij, $
|
(2.1) |
where
The common distribution for the error terms comes from [17], where he proposed the type Ⅰ extreme value distribution or Gumbel distribution for the error terms, that leads to the conditional logit for modelling the data. [24] presented various models and associated assumptions in modelling the choice made by the consumers. To allow for dependence in choices, the error terms may be distributed as normal and that assumption allow the outcomes to be modeled under the probit or the generalized extreme value distribution.
Let
$ Y_{ij} = {1, if ith individual chooses the jth alternative,0, otherwise. $
|
Using the results from the conditional logit, the utility associated with the various choices may be estimated. The error term of the utility would come from the type Ⅰ extreme value distribution. The systematic component in the utility of the choice is given as
$ V_{ij} = \mathbf{x'}_{ij} \beta_{j}, $ |
with
The utility is then given as in Equation (2.1). Hence, the probability of the
$ P(Y_{ij} = 1) = \frac{\exp{(\mathbf{x'}_{ij} \beta_j)}}{\Sigma_{\mathbf{x}_{ij'} \in C} \exp{(\mathbf{x'}_{ij'} \beta_j)}} = \frac{\exp{(V_{ij})}}{\Sigma_{\mathbf{x}_{ij'} \in C} \exp{(V_{ij'})}}, $ |
for
The above can be seen as a special approach at the intersection of information theory (entropy function) and the multinomial logit [1]. Following the setup as described by [23], there are
The choice task considered here is to look at the pairs of attribute-levels. For every profile the choice set (pairs of attribute levels) is then given as:
$ C_{x} = \{(x_{1}, x_{2}), . . ., (x_{1}, x_{K}), (x_{2}, x_{3}), . . ., (x_{K-1}, x_{K}), (x_{2}, x_{1}), . . ., (x_{K}, x_{K-1})\}, \notag $ |
where the first attribute-level is considered to be the best and the second is the worst. From the profile
In our setup, we extend the state of choices as follows. Consider
$ x1=(x11,x12,...,x1K)x2=(x21,x22,...,x2K)⋮xG=(xG1,xG2,...,xGK). $
|
The corresponding choice pairs for the
[15] and [23] gave the best-worst choice probability for profile
$ BWxi(xij,xij′)=b(xij)b(xij′)∑∀(xij,xij′)∈Cxi,j≠j′b(xij)b(xij′), $
|
(2.2) |
where
$ BWxi(xij,xij′)≥0,∀i,j,and∑∀(xi,xj)∈Cxi,j≠j′BWxi(xij,xij′)=1. $
|
With such assumptions, the consumer is expected to select choices with higher
Under random utility theory, the probability an alternative is based on the utility as defined in Equation (2.1). [12] provided the utility for Case 2 BWS models and the definition of the probability as given in Equation (2.2) under the conditional logit model. [13] and [16] described other measure of utility of parameters as a function of log of odds. Here we consider the choice set
$ Uijj′=Vijj′+ϵijj′, $
|
(2.3) |
where
The systematic component can be expressed as,
$ Vijj′=Vij−Vij′=(xij−xij′)′β, $
|
for
$ Vij=βAi+βAixij. $
|
Under the conditional logit, the probability that
$ Pijj′=exp(Vijj′)∑∀(xi,xj)∈Cxi,j≠j′exp(Vijj′). $
|
(2.4) |
Equation (2.2) with the choice of the scale function
$ b(xij)b(xij′)=exp(Vij−Vij′)=exp(Vijj′). $
|
We assume the error terms come from a Type Ⅰ extreme value distribution and use the conditional logit to estimate the parameter vector:
$ β′=(βA1,βA2,…,βAK,βA10,βA11,…,βA1l1−1,…,βAK0,…,βAKlK−1). $
|
[10] suggested connecting models, their parameters in estimating analysis and producing measures that are related to policy and practice. We include the time feature in Case 2 BWS model structure.
Markov decision processes (MDPs) are sequential decisions making processes. MDPs seek to determine the policy or set of decision rules, under which maximum reward over time is obtained. MDPs are defined by the set
Let
For DCMs, the reward is defined by the utility function,
The value function for DCMs comes from Bellman's equation and is given as:
$ Vt(xt,ϵt)=maxdt∈DE(T∑t′=tγt′−tU(xt′,dt′)+ϵ(d′t)|xt,ϵt), $
|
where the discount utility rate is given by
The decision rule used by a consumer is the one under which the utility is maximized, but assuming that a person's perceived utility is impacted by time. [6] reviewed the work done on the discount utility including consumers' discount time factor step. The discount utility rate weights the utility a person gains from an option at some ulterior time based on their current state at time
MDPs model the sequence of decisions based on expected rewards and transition probabilities. We defined state transition as
$ P(s_{t+1}|s_t) = P(s_{t+1} = s'|s_t = s) = P_{ss'} , $ |
and the corresponding transition probability of the decision can be written as
$ \max\limits_{d_t \in D} E(U^{t}(x_t, \epsilon_t)), $ |
for
Since no closed form expression for this dynamic optimization problem is available, the value functions are computed recursively via dynamic programming, under backwards recursion algorithm. First we compute,
$ V^T(x_T) = \sum\limits_{d_T \in D} U(x_T, d_T) P(d_T), $ |
with
Next we move one time step back and compute,
$ V^{T-1}(x_{T-1}, d_{T-1}) = U(x_{T-1}, d_{T-1})+\sum\limits_{d_{T}\in D} \gamma V^{T}(x_{T}) P(d_{T}|d_{T-1}), $ |
and another,
$ V^{T-2}(x_{T-2}, d_{T-2}) = U(x_{T-2}, d_{T-2})+\sum\limits_{d_{T}\in D} \gamma V^{T-1}(x_{T-1}, d_{T-1}) P(d_{T-1}|d_{T-2}). $ |
Following this pattern, we get:
$ V^{t}(x_{t}, d_{t}) = U(x_{t}, d_{t})+\sum\limits_{d_{T}\in D} \gamma V^{t+1}(x_{t+1}, d_{t+1}) P(d_{t+1}|d_{t}), $ |
for
●
●
● The decision set depends on the choice set evaluated
● Transition probabilities depend on a set of parameters
● Transition probability matrices are dependent on time and on the choice set being evaluated.
There are
Let the choice pair
$ πqr=exp((xj−xj′)′θq|r), $
|
for
In Case 2 BWS models, a set of
Let
$ P^{t}_{iss'} = P^{t}(s_{i}'|s_{i}, \boldsymbol{\theta}^t_{s_{i}}), $ |
where
$ \boldsymbol{\theta}^{t}_{s_{i}} = (\theta^{t}_{s_{i}A_{1}}, \ldots, \theta^{t}_{s_{i}A_{K}}, \theta^{t}_{s_{i}A_{1}1}, \ldots, \theta^{t}_{s_{i}A_{K}l_{k}}) $ |
is the set of parameters guiding the transition from
The parameter estimates determined by fitting the conditional logit model, as described in Section 2, produced
$ ˆθtsi=(asiA1(t)ˆβA1,…,asiAK(t)ˆβAK,asiA11(t)ˆβA11,…,asiAKlk(t)ˆβAKlK), $
|
where
$ asi(t)=(asiA1(t),…,asiAK(t),asiA11(t),…,asiAKlk(t)), $
|
depends on the state
These
Given
$ Pt(s′ijj′|si,θtsi)=Pt(Utijj′>Utikk′,∀k≠k′∈Ci|si,θtsi)=Pt(Vtijj′+ϵtijj′>Vtikk′+ϵtikk′,∀k≠k′∈Ci|si,θtsi)=Pt(ϵtikk′<ϵtijj′+Vtijj′−Vtikk′,∀k≠k′∈Ci|si,θtsi), $
|
where
$ Pt(s′ijj′|si,θtsi)=Pt(Utijj′>Utikk′,∀k≠k′∈Ci|si,θtsi)=exp(Vtijj′)∑k,k′∈Ciexp(Vtikk′), $
|
where
The transition matrix is then a
$ P_{i}^{t} = \left( Pti11Pti12...Pti1τPti21Pti22...Pti2τ..................Ptiτ1Ptiτ2...Ptiττ \right) = \left( P^{t}_{iss'}\right)_{\tau \times \tau} $
|
where
The transition matrix may be either stationary or dynamic in nature. In our definition of
The decision at time
We look at the effect of varying hyper-parameters over time to compute the transition probabilities, that is we use the previous parameter estimates as inputs into determining
For simplicity, we will first consider stationary transition matrices. That is,
In practical applications, decisions on how to act or proceed would be dictated under some expected utility. To that end, a backward recursive method is then used and a dynamic planning system that the process from its starting values/stages to its goal stage is provided.
We adapt our simulations of experiments to [5]. The latter conducted a Case 2 BWS type of study to examine the quality of life of seniors. They considered a balanced design with five attributes (attachment, security, role, enjoyment, and control) with four attribute levels (none, little, lot, and all) for attachment, security, and enjoyment and (none, few, many, all) for role and control. The attribute-levels are about the hypothetical quality of life states of 30 people of age 65 or more studied at one time. In their paper, they provide a partial look at their data and include the parameter estimates. Using that information, data was generated under such rationale and MDP simulations performed.
As mentioned in [23], a full factorial design, with a total of 1024 profile in this case, is costly and places an overwhelming choice task on the shoulders of the consumers. Therefore, an optimal fractional factorial design was considered. In doing the computations in R, we utilized a package DoE.design. A subset of 32 profiles, with
[5] | Simulated data | |||
Parameters | Estimates | SE | Estimates | SE |
Constant | -0.3067 | 0.0750 | 0.0500 | * |
Attachment | 0.8105 | 0.0803 | 0.8142 | * |
Security | * | * | * | * |
Enjoyment | 0.2632 | 0.1010 | 0.2842 | 0.0394 |
Role | 0.1908 | 0.0974 | 0.1611 | 0.0400 |
Control | 0.1076 | 0.0971 | 0.1148 | 0.0402 |
Attachment None | -1.9678 | 0.1129 | -1.8535 | 0.0548 |
Attachment Little | 0.1694 | 0.1012 | 0.1389 | 0.0532 |
Attachment Lot | 0.9053 | 0.0905 | 0.9210 | 0.0561 |
Attachment All | 0.8932 | * | 0.7936 | * |
Security None | -0.6123 | 0.1180 | -0.6262 | 0.0541 |
Security Little | -0.3761 | 0.1302 | -0.4077 | 0.0547 |
Security Lot | 0.0373 | 0.1153 | 0.1027 | 0.0543 |
Security All | 0.9511 | * | 0.9312 | * |
Enjoyment None | -0.8888 | 0.1286 | -0.8166 | 0.0542 |
Enjoyment Little | -0.3367 | 0.1632 | -0.3814 | 0.0544 |
Enjoyment Lot | 0.6561 | 0.1493 | 0.6844 | 0.0548 |
Enjoyment All | 0.5695 | * | 0.5136 | * |
Role None | -0.8956 | 0.1239 | -0.8903 | 0.0546 |
Role Few | -0.0277 | 0.1532 | -0.0079 | 0.0546 |
Role Many | 0.4435 | 0.1363 | 0.4007 | 0.0546 |
Role All | 0.4798 | * | 0.4975 | * |
Control None | -0.8085 | 0.1122 | -0.7254 | 0.0546 |
Control Few | 0.0835 | 0.1596 | 0.0755 | 0.0552 |
Control Many | 0.2780 | 0.1376 | 0.2592 | 0.0543 |
Control All | 0.4471 | * | 0.3907 | * |
Attribute and attribute-level data in the experiments are series of
$ lk∑i=1βi=0orβlk=−li−1∑j=1βj, $
|
for all
The probabilities to simulate choice behavior were computed using Equation (2.4). Using the estimates provided in Table 1, the values of
The value of
$ ˆVijj′=exp(ˆVij−ˆVij′)=exp((ˆβAj+ˆβAjxj)−(ˆβAj′+ˆβAj′xj′))=exp((0.8142−1.8535)−(0.2842+0.6884)). $
|
Obtaining these values for all choice pairs, the probabilities of choice selection were determined per profile and consumer choices were simulated. The value function, or expected utility, under our set up for the best-worst pairs from profile 1 are computed with the discount rate
The data was exported from R into the SAS® environment. Using the SAS® multinomial discrete choice procedure (MDC), the multinomial logit model was fitted to the data.
From the parameter estimates, we determine the choice pairs with the highest and lowest utilities for the experiment as in Equation (2.3). The choice pairs with the highest utilities are given in Table 2, and the pairs with the lowest utilities are given in Table 3. Capturing the attribute-level information in the choice pair, we consider the notation
Best Attribute | Level | Worst Attribute | Level | Utility |
1 | 3 | 5 | 1 | 8.9107 |
1 | 3 | 4 | 1 | 7.7977 |
1 | 4 | 5 | 1 | 7.2599 |
1 | 3 | 3 | 1 | 6.9108 |
1 | 4 | 4 | 1 | 6.6562 |
1 | 3 | 2 | 1 | 6.4402 |
Best Attribute | Level | Worst Attribute | Level | Utility |
5 | 1 | 1 | 3 | -4.3159 |
4 | 1 | 1 | 3 | -4.1167 |
5 | 1 | 1 | 4 | -3.9912 |
3 | 1 | 1 | 3 | -3.9082 |
4 | 1 | 1 | 4 | -3.8493 |
2 | 1 | 1 | 3 | -3.7974 |
We next conduct the Case 2 BWS experiment of choosing the pairs and describing the optimal variation over
For the simulated data of [5], we consider MDPs where the consumers are more likely to choose the same alternative at each time point. The transition parameters
$ \theta^{t}_{s_{i}A_{k}} = \left\{ 3|βAk|,if xij∈Ak,−3|βAk|,if xij′∈Ak,βAk, otherwise, \right. $
|
and for the attribute-levels,
$ \theta^{t}_{s_{i}A_{k}x_{ik}} = \left\{ 3|βAkxik|,if xij=xik where xik∈Akxik,−3|βAkxik|,if xij′=xik where xik∈Akxik,βAkxik, otherwise, \right. $
|
where
In this option, consumers acquire time dependent decisions with a different impact, making the transition probabilities dynamic. For the simulated data as in [5], we consider MDPs where in the consumers are more likely to choose the same alternative at each time point. The transition parameters
$ \theta^{t}_{s_{i}A_{k}} = \left\{ 3t|βAk|,if xij∈Ak,−3t|βAk|,if xij′∈Ak,βAk, otherwise, \right. $
|
and for the attribute-levels,
$ \theta^{t}_{s_{i}A_{k}x_{ik}} = \left\{ 3t|βAkxik|,if xij=xik where xik∈Akxik,−3t|βAkxik|,if xij′=xik where xik∈Akxik,βAkxik, otherwise, \right. $
|
where
The responses for choice sets are discussed here. Table 2 reveals that "Attachment" is one of the most important attributes for the models, matching the results obtained in [5]. Since only one level of "Attachment" is represented in each profile, we do not compare the attribute-levels with those found in [5].
Furthermore, the expected utilities are then obtained for each of the 32 profiles and each of the 20 choices. For summary purpose, the difference of the expected utility values,
The transition matrices are built for each of the options of previous subsections. For Option 1 the transition matrix is the same at all the time points since it is stationary, and it is given in Table 4. For Option 2, the transition matrix at time
0.518 | 0.000 | 0.038 | 0.001 | 0.081 | 0.000 | 0.192 | 0.000 | 0.000 | 0.069 | 0.001 | 0.032 | 0.002 | 0.014 | 0.011 | 0.002 | 0.026 | 0.001 | 0.012 | 0.002 | |
| 0.000 | 0.487 | 0.000 | 0.226 | 0.000 | 0.105 | 0.001 | 0.044 | 0.010 | 0.002 | 0.022 | 0.001 | 0.052 | 0.000 | 0.010 | 0.002 | 0.024 | 0.001 | 0.011 | 0.002 |
| 0.025 | 0.000 | 0.703 | 0.000 | 0.037 | 0.000 | 0.088 | 0.000 | 0.065 | 0.000 | 0.003 | 0.002 | 0.008 | 0.001 | 0.000 | 0.043 | 0.000 | 0.018 | 0.005 | 0.001 |
| 0.000 | 0.076 | 0.000 | 0.703 | 0.000 | 0.051 | 0.000 | 0.021 | 0.000 | 0.021 | 0.003 | 0.002 | 0.008 | 0.001 | 0.032 | 0.000 | 0.075 | 0.000 | 0.005 | 0.001 |
| 0.091 | 0.001 | 0.063 | 0.001 | 0.331 | 0.000 | 0.032 | 0.000 | 0.006 | 0.012 | 0.031 | 0.002 | 0.030 | 0.002 | 0.044 | 0.002 | 0.043 | 0.002 | 0.008 | 0.009 |
| 0.000 | 0.223 | 0.000 | 0.320 | 0.000 | 0.262 | 0.001 | 0.063 | 0.005 | 0.010 | 0.006 | 0.008 | 0.024 | 0.002 | 0.008 | 0.005 | 0.034 | 0.001 | 0.028 | 0.002 |
| 0.025 | 0.000 | 0.018 | 0.000 | 0.038 | 0.000 | 0.701 | 0.000 | 0.002 | 0.003 | 0.004 | 0.002 | 0.065 | 0.000 | 0.005 | 0.001 | 0.093 | 0.000 | 0.043 | 0.000 |
| 0.000 | 0.076 | 0.000 | 0.110 | 0.000 | 0.051 | 0.000 | 0.681 | 0.002 | 0.003 | 0.003 | 0.002 | 0.000 | 0.020 | 0.005 | 0.001 | 0.000 | 0.014 | 0.000 | 0.031 |
| 0.003 | 0.011 | 0.229 | 0.000 | 0.012 | 0.002 | 0.029 | 0.001 | 0.469 | 0.000 | 0.025 | 0.001 | 0.058 | 0.001 | 0.000 | 0.101 | 0.001 | 0.043 | 0.013 | 0.002 |
| 0.082 | 0.000 | 0.001 | 0.034 | 0.013 | 0.003 | 0.031 | 0.001 | 0.000 | 0.501 | 0.001 | 0.036 | 0.002 | 0.015 | 0.078 | 0.000 | 0.185 | 0.000 | 0.013 | 0.002 |
| 0.009 | 0.038 | 0.020 | 0.018 | 0.103 | 0.003 | 0.100 | 0.003 | 0.040 | 0.009 | 0.211 | 0.002 | 0.206 | 0.002 | 0.098 | 0.004 | 0.095 | 0.004 | 0.018 | 0.019 |
| 0.226 | 0.001 | 0.016 | 0.015 | 0.020 | 0.012 | 0.084 | 0.003 | 0.001 | 0.215 | 0.001 | 0.176 | 0.006 | 0.042 | 0.019 | 0.013 | 0.079 | 0.003 | 0.065 | 0.004 |
| 0.002 | 0.010 | 0.005 | 0.005 | 0.011 | 0.002 | 0.206 | 0.000 | 0.011 | 0.002 | 0.023 | 0.001 | 0.422 | 0.000 | 0.011 | 0.002 | 0.196 | 0.000 | 0.091 | 0.000 |
| 0.095 | 0.000 | 0.007 | 0.006 | 0.015 | 0.003 | 0.001 | 0.038 | 0.001 | 0.090 | 0.001 | 0.042 | 0.000 | 0.557 | 0.014 | 0.003 | 0.001 | 0.040 | 0.001 | 0.087 |
| 0.014 | 0.006 | 0.002 | 0.058 | 0.053 | 0.002 | 0.051 | 0.002 | 0.001 | 0.088 | 0.035 | 0.003 | 0.034 | 0.003 | 0.319 | 0.000 | 0.312 | 0.000 | 0.009 | 0.010 |
| 0.011 | 0.005 | 0.324 | 0.000 | 0.010 | 0.006 | 0.040 | 0.001 | 0.214 | 0.000 | 0.006 | 0.009 | 0.027 | 0.002 | 0.000 | 0.251 | 0.001 | 0.060 | 0.031 | 0.002 |
| 0.004 | 0.002 | 0.000 | 0.016 | 0.006 | 0.001 | 0.110 | 0.000 | 0.000 | 0.024 | 0.004 | 0.002 | 0.073 | 0.000 | 0.036 | 0.000 | 0.672 | 0.000 | 0.049 | 0.000 |
| 0.004 | 0.002 | 0.113 | 0.000 | 0.006 | 0.001 | 0.000 | 0.015 | 0.075 | 0.000 | 0.004 | 0.002 | 0.000 | 0.023 | 0.000 | 0.050 | 0.000 | 0.668 | 0.000 | 0.035 |
| 0.010 | 0.004 | 0.007 | 0.006 | 0.008 | 0.005 | 0.272 | 0.000 | 0.00 | 0.009 | 0.00 | 0.008 | 0.179 | 0.000 | 0.008 | 0.005 | 0.258 | 0.000 | 0.211 | 0.000 |
| 0.020 | 0.009 | 0.014 | 0.013 | 0.073 | 0.002 | 0.002 | 0.078 | 0.009 | 0.019 | 0.048 | 0.004 | 0.002 | 0.118 | 0.070 | 0.003 | 0.002 | 0.082 | 0.000 | 0.432 |
0.980 | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 0.974 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.048 | 0.000 | 0.033 | 0.000 | 0.748 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.129 | 0.000 | 0.185 | 0.000 | 0.650 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.973 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.980 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.031 | 0.001 | 0.001 | 0.012 | 0.000 | 0.003 | 0.000 | 0.033 | 0.000 | 0.737 | 0.000 | 0.167 | 0.000 | 0.011 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 |
| 0.180 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.171 | 0.000 | 0.600 | 0.000 | 0.033 | 0.000 | 0.002 | 0.002 | 0.000 | 0.008 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.962 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.989 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.005 |
| 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.749 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.193 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.127 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.643 | 0.000 | 0.036 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.168 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 | 0.160 | 0.000 | 0.561 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | 0.039 | 0.000 | 0.868 |
1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.002 | 0.000 | 0.004 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.992 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.990 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.998 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
DCMs have applications in many areas. However, challenging issues are faced because of the large number of covariates, reliability of model, and the condition that consumer behavior is time dependent. By extending the idea of choices into time dependent and with transition probabilities process, we presented a time dependent Case 2 BWS model with evaluation under random utility analysis. Our study showed that clustering can be captured and the design can predict time stages needful to reach some target. With the simulated examples, dynamic programming algorithms reveal the highest and lowest utility trends.
The authors are very thankful to the support provided by the editor. The feedbacks and comments from the anonymous reviewers helped considerably improve the quality of the manuscript.
[1] |
Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chem 12: 539–517. doi: 10.1039/b922014c
![]() |
[2] | Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass, National Renewable Energy Laboratory: Golden, CO. |
[3] |
Zhang D, Dumont MJ (2017) Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J Polym Sci Pol Chem 55: 1478–1492. doi: 10.1002/pola.28527
![]() |
[4] |
Deng J, Pan T, Xu Q, et al. (2013) Linked strategy for the production of fuels via formose reaction. Sci Rep 3: 1244. doi: 10.1038/srep01244
![]() |
[5] |
Rosatella AA, Simeonov SP, Frade RFM, et al. (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13: 754–741. doi: 10.1039/c0gc00401d
![]() |
[6] |
Cui MS, Deng J, Li XL, et al. (2016) Production of 4-Hydroxymethylfurfural from derivatives of biomass-derived glycerol for chemicals and polymers. ACS Sustain Chem Eng 4: 1707–1714. doi: 10.1021/acssuschemeng.5b01657
![]() |
[7] |
van Putten RJ, van der Waal JC, de Jong ED, et al. (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113: 1499–1597. doi: 10.1021/cr300182k
![]() |
[8] |
Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technol 238: 716–732. doi: 10.1016/j.biortech.2017.04.026
![]() |
[9] |
Qin YZ, Zong MH, Lou WY, et al. (2016) Biocatalytic upgrading of 5-Hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate in biomass-derived solvents. ACS Sustain Chem Eng 4: 4050–4054. doi: 10.1021/acssuschemeng.6b00996
![]() |
[10] |
Bohre A, Dutta S, Saha B, et al. (2015) Upgrading furfurals to drop-in biofuels: An overview. ACS Sustain Chem Eng 3: 1263–1277. doi: 10.1021/acssuschemeng.5b00271
![]() |
[11] |
Caes BR, Teixeira RE, Knapp KG, et al. (2015) Biomass to furanics: Renewable routes to chemicals and fuels. ACS Sustain Chem Eng 3: 2591–2605. doi: 10.1021/acssuschemeng.5b00473
![]() |
[12] |
Alexandrino K, Millera Á, Bilbao R, et al. (2014) Interaction between 2,5-dimethylfuran and nitric oxide: Experimental and modeling study. Energ Fuel 28: 4193–4198. doi: 10.1021/ef5005573
![]() |
[13] |
Zhong S, Daniel R, Xu H, et al. (2010) Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energ Fuel 24: 2891–2899. doi: 10.1021/ef901575a
![]() |
[14] | Ray P, Smith C, Simon G, et al. (2017) Renewable green platform chemicals for polymers. Molecules 12: 376. |
[15] |
Burgess SK, Leisen JE, Kraftschik BE, et al. (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47: 1383–1391. doi: 10.1021/ma5000199
![]() |
[16] |
Papageorgiou GZ, Tsanaktsis V, Bikiaris DN (2014) Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys 16: 7946–7958. doi: 10.1039/C4CP00518J
![]() |
[17] |
Codou A, Moncel M, van Berkel JG, et al. (2016) Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Phys Chem Chem Phys 18: 16647–16658. doi: 10.1039/C6CP01227B
![]() |
[18] |
Dimitriadis T, Bikiaris DN, Papageorgiou GZ, et al. (2016) Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry. Macromol Chem Phys 217: 2056–2062. doi: 10.1002/macp.201600278
![]() |
[19] |
Lomelí-Rodríguez M, Martín-Molina M, Jiménez-Pardo M, et al. (2016) Synthesis and kinetic modeling of biomass-derived renewable polyesters. J Polym Sci Pol Chem 54: 2876–2887. doi: 10.1002/pola.28173
![]() |
[20] |
Terzopoulou Z, Tsanaktsis V, Nerantzaki M, et al. (2016) Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. J Anal Appl Pyrol 117: 162–175. doi: 10.1016/j.jaap.2015.11.016
![]() |
[21] |
Baba Y, Hirukawa N, Tanohira N, et al. (2003) Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (Calcineurin). J Am Chem Soc 125: 9740–9749. doi: 10.1021/ja034694y
![]() |
[22] | Clark DE, Clark KL, Coleman RA, et al. (2005) Patent No. WO2004067524. |
[23] | Ermakov S, Beletskii A, Eismont O, et al. (2015) Brief review of liquid crystals, In: Liquid Crystals in Biotribology, Springer, 37–56. |
[24] |
Dewar MJS, Riddle RM (1975) Factors influencing the stabilities of nematic liquid crystals. J Am Chem Soc 97: 6658–6662. doi: 10.1021/ja00856a010
![]() |
[25] | Kowalski S, Lukasiewicz M, Duda-Chodak A, et al. (2013) 5-hydroxymethyl-2-furfural (HMF)-heat-induced formation, occurrence in food and biotransformation-a review. Pol J Food Nutr Sci 63: 207–225. |
[26] |
Murkovic M, Bornik MA (2007) Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol Nutr Food Res 51: 390–394. doi: 10.1002/mnfr.200600251
![]() |
[27] |
Murkovic M, Pichler N (2006) Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol Nutr Food Res 50: 842–846. doi: 10.1002/mnfr.200500262
![]() |
[28] |
Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16: 24–38. doi: 10.1039/C3GC41324A
![]() |
[29] |
Rout PK, Nannaware AD, Prakash O, et al. (2016) Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising biochemical and biofuel feedstock. Chem Eng Sci 142: 318–346. doi: 10.1016/j.ces.2015.12.002
![]() |
[30] |
Mukherjee A, Dumont MJ, Raghavan V (2015) Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenerg 72: 143–183. doi: 10.1016/j.biombioe.2014.11.007
![]() |
[31] |
Thiyagarajan S, Pukin A, van Haveren J, et al. (2013) Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Adv 3: 15678–15686. doi: 10.1039/C3RA42457J
![]() |
[32] |
Corre C, Song L, O'Rourke S, et al. (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105: 17510–17515. doi: 10.1073/pnas.0805530105
![]() |
[33] |
Sidda JD, Corre C (2012) Gamma-butyrolactone and furan signaling systems in Streptomyces. Method Enzymol 517: 71–87. doi: 10.1016/B978-0-12-404634-4.00004-8
![]() |
[34] |
Wang Y, Jones MK, Xu H, et al. (2015) Mechanism of the enzymatic synthesis of 4-(Hydroxymethyl)-2-furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate catalyzed by 4-HFC-P synthase. Biochemistry 54: 2997–3008. doi: 10.1021/acs.biochem.5b00176
![]() |
[35] |
Miller D, Wang Y, Xu H, et al. (2014) Biosynthesis of the 5-(Aminomethyl)-3-furanmethanol moiety of methanofuran. Biochemistry 53: 4635–4647. doi: 10.1021/bi500615p
![]() |
[36] |
Wang Y, Xu H, Jones MK, et al. (2015) Identification of the final two genes functioning in methanofuran biosynthesis in Methanocaldococcus jannaschii. J Bacteriol 197: 2850–2858. doi: 10.1128/JB.00401-15
![]() |
[37] | Jia J, Schorken U, Lindqvist Y, et al. (1997) Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases. Protein Sci 6: 119–124. |
[38] |
Hester G, Brenner-Holzach O, Rossi FA, et al. (1991) The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution. FEBS Lett 292: 237–242. doi: 10.1016/0014-5793(91)80875-4
![]() |
[39] |
Sygusch J, Beaudry D, Allaire M (1987) Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc Natl Acad Sci USA 84: 7846–7850. doi: 10.1073/pnas.84.22.7846
![]() |
[40] |
Blom N, Sygusch J (1997) Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol 4: 36–39. doi: 10.1038/nsb0197-36
![]() |
[41] |
Izard T, Lawrence MC, Malby RL, et al. (1994) The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli. Structure 2: 361–369. doi: 10.1016/S0969-2126(00)00038-1
![]() |
[42] |
Kim CG, Yu TW, Fryhle CB, et al. (1998) 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics. J Biol Chem 273: 6030–6040. doi: 10.1074/jbc.273.11.6030
![]() |
[43] |
Kim H, Certa U, Dobeli H, et al. (1998) Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry 37: 4388–4396. doi: 10.1021/bi972233h
![]() |
[44] |
Bobik TA, Morales EJ, Shin A, et al. (2014) Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii. Acta Crystallogr F 70: 1472–1479. doi: 10.1107/S2053230X1402130X
![]() |
[45] |
Heine A, DeSantis G, Luz JG, et al. (2001) Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294: 369–374. doi: 10.1126/science.1063601
![]() |
[46] |
Almeida JRM, Röder A, Modig T, et al. (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biot 78: 939–945. doi: 10.1007/s00253-008-1364-y
![]() |
[47] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25–33. |
[48] |
Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363: 769–776. doi: 10.1042/bj3630769
![]() |
[49] |
Barciszewski J, Siboska GE, Pedersen BO, et al. (1997) A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett 414: 457–460. doi: 10.1016/S0014-5793(97)01037-5
![]() |
[50] |
Horváth IS, Taherzadeh MJ, Niklasson C, et al. (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75: 540–549. doi: 10.1002/bit.10090
![]() |
[51] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74: 17–24. |
[52] |
Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12: 307–331. doi: 10.1016/j.ymben.2010.03.004
![]() |
[53] |
Wang X, Miller EN, Yomano LP, et al. (2011) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microb 77: 5132–5140. doi: 10.1128/AEM.05008-11
![]() |
[54] | Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors andin situ detoxification, In: Biomass to Biofuels: Strategies for Global Industries, Blackwell Publishing Ltd., 233–259. |
[55] |
Liu ZL, Moon J, Andersh BJ, et al. (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biot 81: 743–753. doi: 10.1007/s00253-008-1702-0
![]() |
[56] | Nieves LM, Panyon LA, Wang X (2015) Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol 3: 1–10. |
[57] |
Wierckx N, Koopman F, Ruijssenaars HJ, et al. (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biot 92: 1095–1105. doi: 10.1007/s00253-011-3632-5
![]() |
[58] |
Zhang J, Zhu Z, Wang X, et al. (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3: 26. doi: 10.1186/1754-6834-3-26
![]() |
[59] |
Trifonova R, Postma J, Ketelaars JJMH, et al. (2008) Thermally treated grass fibers as colonizable substrate for beneficial bacterial inoculum. Microbial Ecol 56: 561–571. doi: 10.1007/s00248-008-9376-9
![]() |
[60] |
López MJ, Nichols NN, Dien BS, et al. (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biot 64: 125–131. doi: 10.1007/s00253-003-1401-9
![]() |
[61] |
Boopathy R, Daniels L (1991) Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester. Curr Microbiol 23: 327–332. doi: 10.1007/BF02104134
![]() |
[62] | Brune G, Schoberth SM, Sahm H (1983) Growth of a strictly anaerobic bacterium on furfural (2-furaldehyde). Appl Environ Microb 46: 1187–1192. |
[63] |
Koopman F, Wierckx N, de Winde JH, et al. (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107: 4919–4924. doi: 10.1073/pnas.0913039107
![]() |
[64] |
Dijkman WP, Groothuis DE, Fraaije MW (2014) Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Edit 53: 6515–6518. doi: 10.1002/anie.201402904
![]() |
[65] |
Dijkman WP, Fraaije MW (2014) Discovery and characterization of a 5-Hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl Environ Microb 80: 1082–1090. doi: 10.1128/AEM.03740-13
![]() |
[66] |
Dijkman WP, Binda C, Fraaije MW, et al. (2015) Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catal 5: 1833–1839. doi: 10.1021/acscatal.5b00031
![]() |
[67] | de Jong E, Dam MA, Sipos L, et al. (2012) Furandicarboxylic acid (fdca), a versatile building block for a very interesting class of polyesters, In: Biobased Monomers, Polymers, and Materials, American Chemical Society, 1–13. |
[5] | Simulated data | |||
Parameters | Estimates | SE | Estimates | SE |
Constant | -0.3067 | 0.0750 | 0.0500 | * |
Attachment | 0.8105 | 0.0803 | 0.8142 | * |
Security | * | * | * | * |
Enjoyment | 0.2632 | 0.1010 | 0.2842 | 0.0394 |
Role | 0.1908 | 0.0974 | 0.1611 | 0.0400 |
Control | 0.1076 | 0.0971 | 0.1148 | 0.0402 |
Attachment None | -1.9678 | 0.1129 | -1.8535 | 0.0548 |
Attachment Little | 0.1694 | 0.1012 | 0.1389 | 0.0532 |
Attachment Lot | 0.9053 | 0.0905 | 0.9210 | 0.0561 |
Attachment All | 0.8932 | * | 0.7936 | * |
Security None | -0.6123 | 0.1180 | -0.6262 | 0.0541 |
Security Little | -0.3761 | 0.1302 | -0.4077 | 0.0547 |
Security Lot | 0.0373 | 0.1153 | 0.1027 | 0.0543 |
Security All | 0.9511 | * | 0.9312 | * |
Enjoyment None | -0.8888 | 0.1286 | -0.8166 | 0.0542 |
Enjoyment Little | -0.3367 | 0.1632 | -0.3814 | 0.0544 |
Enjoyment Lot | 0.6561 | 0.1493 | 0.6844 | 0.0548 |
Enjoyment All | 0.5695 | * | 0.5136 | * |
Role None | -0.8956 | 0.1239 | -0.8903 | 0.0546 |
Role Few | -0.0277 | 0.1532 | -0.0079 | 0.0546 |
Role Many | 0.4435 | 0.1363 | 0.4007 | 0.0546 |
Role All | 0.4798 | * | 0.4975 | * |
Control None | -0.8085 | 0.1122 | -0.7254 | 0.0546 |
Control Few | 0.0835 | 0.1596 | 0.0755 | 0.0552 |
Control Many | 0.2780 | 0.1376 | 0.2592 | 0.0543 |
Control All | 0.4471 | * | 0.3907 | * |
Best Attribute | Level | Worst Attribute | Level | Utility |
1 | 3 | 5 | 1 | 8.9107 |
1 | 3 | 4 | 1 | 7.7977 |
1 | 4 | 5 | 1 | 7.2599 |
1 | 3 | 3 | 1 | 6.9108 |
1 | 4 | 4 | 1 | 6.6562 |
1 | 3 | 2 | 1 | 6.4402 |
Best Attribute | Level | Worst Attribute | Level | Utility |
5 | 1 | 1 | 3 | -4.3159 |
4 | 1 | 1 | 3 | -4.1167 |
5 | 1 | 1 | 4 | -3.9912 |
3 | 1 | 1 | 3 | -3.9082 |
4 | 1 | 1 | 4 | -3.8493 |
2 | 1 | 1 | 3 | -3.7974 |
0.518 | 0.000 | 0.038 | 0.001 | 0.081 | 0.000 | 0.192 | 0.000 | 0.000 | 0.069 | 0.001 | 0.032 | 0.002 | 0.014 | 0.011 | 0.002 | 0.026 | 0.001 | 0.012 | 0.002 | |
| 0.000 | 0.487 | 0.000 | 0.226 | 0.000 | 0.105 | 0.001 | 0.044 | 0.010 | 0.002 | 0.022 | 0.001 | 0.052 | 0.000 | 0.010 | 0.002 | 0.024 | 0.001 | 0.011 | 0.002 |
| 0.025 | 0.000 | 0.703 | 0.000 | 0.037 | 0.000 | 0.088 | 0.000 | 0.065 | 0.000 | 0.003 | 0.002 | 0.008 | 0.001 | 0.000 | 0.043 | 0.000 | 0.018 | 0.005 | 0.001 |
| 0.000 | 0.076 | 0.000 | 0.703 | 0.000 | 0.051 | 0.000 | 0.021 | 0.000 | 0.021 | 0.003 | 0.002 | 0.008 | 0.001 | 0.032 | 0.000 | 0.075 | 0.000 | 0.005 | 0.001 |
| 0.091 | 0.001 | 0.063 | 0.001 | 0.331 | 0.000 | 0.032 | 0.000 | 0.006 | 0.012 | 0.031 | 0.002 | 0.030 | 0.002 | 0.044 | 0.002 | 0.043 | 0.002 | 0.008 | 0.009 |
| 0.000 | 0.223 | 0.000 | 0.320 | 0.000 | 0.262 | 0.001 | 0.063 | 0.005 | 0.010 | 0.006 | 0.008 | 0.024 | 0.002 | 0.008 | 0.005 | 0.034 | 0.001 | 0.028 | 0.002 |
| 0.025 | 0.000 | 0.018 | 0.000 | 0.038 | 0.000 | 0.701 | 0.000 | 0.002 | 0.003 | 0.004 | 0.002 | 0.065 | 0.000 | 0.005 | 0.001 | 0.093 | 0.000 | 0.043 | 0.000 |
| 0.000 | 0.076 | 0.000 | 0.110 | 0.000 | 0.051 | 0.000 | 0.681 | 0.002 | 0.003 | 0.003 | 0.002 | 0.000 | 0.020 | 0.005 | 0.001 | 0.000 | 0.014 | 0.000 | 0.031 |
| 0.003 | 0.011 | 0.229 | 0.000 | 0.012 | 0.002 | 0.029 | 0.001 | 0.469 | 0.000 | 0.025 | 0.001 | 0.058 | 0.001 | 0.000 | 0.101 | 0.001 | 0.043 | 0.013 | 0.002 |
| 0.082 | 0.000 | 0.001 | 0.034 | 0.013 | 0.003 | 0.031 | 0.001 | 0.000 | 0.501 | 0.001 | 0.036 | 0.002 | 0.015 | 0.078 | 0.000 | 0.185 | 0.000 | 0.013 | 0.002 |
| 0.009 | 0.038 | 0.020 | 0.018 | 0.103 | 0.003 | 0.100 | 0.003 | 0.040 | 0.009 | 0.211 | 0.002 | 0.206 | 0.002 | 0.098 | 0.004 | 0.095 | 0.004 | 0.018 | 0.019 |
| 0.226 | 0.001 | 0.016 | 0.015 | 0.020 | 0.012 | 0.084 | 0.003 | 0.001 | 0.215 | 0.001 | 0.176 | 0.006 | 0.042 | 0.019 | 0.013 | 0.079 | 0.003 | 0.065 | 0.004 |
| 0.002 | 0.010 | 0.005 | 0.005 | 0.011 | 0.002 | 0.206 | 0.000 | 0.011 | 0.002 | 0.023 | 0.001 | 0.422 | 0.000 | 0.011 | 0.002 | 0.196 | 0.000 | 0.091 | 0.000 |
| 0.095 | 0.000 | 0.007 | 0.006 | 0.015 | 0.003 | 0.001 | 0.038 | 0.001 | 0.090 | 0.001 | 0.042 | 0.000 | 0.557 | 0.014 | 0.003 | 0.001 | 0.040 | 0.001 | 0.087 |
| 0.014 | 0.006 | 0.002 | 0.058 | 0.053 | 0.002 | 0.051 | 0.002 | 0.001 | 0.088 | 0.035 | 0.003 | 0.034 | 0.003 | 0.319 | 0.000 | 0.312 | 0.000 | 0.009 | 0.010 |
| 0.011 | 0.005 | 0.324 | 0.000 | 0.010 | 0.006 | 0.040 | 0.001 | 0.214 | 0.000 | 0.006 | 0.009 | 0.027 | 0.002 | 0.000 | 0.251 | 0.001 | 0.060 | 0.031 | 0.002 |
| 0.004 | 0.002 | 0.000 | 0.016 | 0.006 | 0.001 | 0.110 | 0.000 | 0.000 | 0.024 | 0.004 | 0.002 | 0.073 | 0.000 | 0.036 | 0.000 | 0.672 | 0.000 | 0.049 | 0.000 |
| 0.004 | 0.002 | 0.113 | 0.000 | 0.006 | 0.001 | 0.000 | 0.015 | 0.075 | 0.000 | 0.004 | 0.002 | 0.000 | 0.023 | 0.000 | 0.050 | 0.000 | 0.668 | 0.000 | 0.035 |
| 0.010 | 0.004 | 0.007 | 0.006 | 0.008 | 0.005 | 0.272 | 0.000 | 0.00 | 0.009 | 0.00 | 0.008 | 0.179 | 0.000 | 0.008 | 0.005 | 0.258 | 0.000 | 0.211 | 0.000 |
| 0.020 | 0.009 | 0.014 | 0.013 | 0.073 | 0.002 | 0.002 | 0.078 | 0.009 | 0.019 | 0.048 | 0.004 | 0.002 | 0.118 | 0.070 | 0.003 | 0.002 | 0.082 | 0.000 | 0.432 |
0.980 | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 0.974 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.048 | 0.000 | 0.033 | 0.000 | 0.748 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.129 | 0.000 | 0.185 | 0.000 | 0.650 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.973 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.980 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.031 | 0.001 | 0.001 | 0.012 | 0.000 | 0.003 | 0.000 | 0.033 | 0.000 | 0.737 | 0.000 | 0.167 | 0.000 | 0.011 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 |
| 0.180 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.171 | 0.000 | 0.600 | 0.000 | 0.033 | 0.000 | 0.002 | 0.002 | 0.000 | 0.008 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.962 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.989 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.005 |
| 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.749 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.193 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.127 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.643 | 0.000 | 0.036 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.168 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 | 0.160 | 0.000 | 0.561 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | 0.039 | 0.000 | 0.868 |
1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.002 | 0.000 | 0.004 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.992 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.990 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.998 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
[5] | Simulated data | |||
Parameters | Estimates | SE | Estimates | SE |
Constant | -0.3067 | 0.0750 | 0.0500 | * |
Attachment | 0.8105 | 0.0803 | 0.8142 | * |
Security | * | * | * | * |
Enjoyment | 0.2632 | 0.1010 | 0.2842 | 0.0394 |
Role | 0.1908 | 0.0974 | 0.1611 | 0.0400 |
Control | 0.1076 | 0.0971 | 0.1148 | 0.0402 |
Attachment None | -1.9678 | 0.1129 | -1.8535 | 0.0548 |
Attachment Little | 0.1694 | 0.1012 | 0.1389 | 0.0532 |
Attachment Lot | 0.9053 | 0.0905 | 0.9210 | 0.0561 |
Attachment All | 0.8932 | * | 0.7936 | * |
Security None | -0.6123 | 0.1180 | -0.6262 | 0.0541 |
Security Little | -0.3761 | 0.1302 | -0.4077 | 0.0547 |
Security Lot | 0.0373 | 0.1153 | 0.1027 | 0.0543 |
Security All | 0.9511 | * | 0.9312 | * |
Enjoyment None | -0.8888 | 0.1286 | -0.8166 | 0.0542 |
Enjoyment Little | -0.3367 | 0.1632 | -0.3814 | 0.0544 |
Enjoyment Lot | 0.6561 | 0.1493 | 0.6844 | 0.0548 |
Enjoyment All | 0.5695 | * | 0.5136 | * |
Role None | -0.8956 | 0.1239 | -0.8903 | 0.0546 |
Role Few | -0.0277 | 0.1532 | -0.0079 | 0.0546 |
Role Many | 0.4435 | 0.1363 | 0.4007 | 0.0546 |
Role All | 0.4798 | * | 0.4975 | * |
Control None | -0.8085 | 0.1122 | -0.7254 | 0.0546 |
Control Few | 0.0835 | 0.1596 | 0.0755 | 0.0552 |
Control Many | 0.2780 | 0.1376 | 0.2592 | 0.0543 |
Control All | 0.4471 | * | 0.3907 | * |
Best Attribute | Level | Worst Attribute | Level | Utility |
1 | 3 | 5 | 1 | 8.9107 |
1 | 3 | 4 | 1 | 7.7977 |
1 | 4 | 5 | 1 | 7.2599 |
1 | 3 | 3 | 1 | 6.9108 |
1 | 4 | 4 | 1 | 6.6562 |
1 | 3 | 2 | 1 | 6.4402 |
Best Attribute | Level | Worst Attribute | Level | Utility |
5 | 1 | 1 | 3 | -4.3159 |
4 | 1 | 1 | 3 | -4.1167 |
5 | 1 | 1 | 4 | -3.9912 |
3 | 1 | 1 | 3 | -3.9082 |
4 | 1 | 1 | 4 | -3.8493 |
2 | 1 | 1 | 3 | -3.7974 |
0.518 | 0.000 | 0.038 | 0.001 | 0.081 | 0.000 | 0.192 | 0.000 | 0.000 | 0.069 | 0.001 | 0.032 | 0.002 | 0.014 | 0.011 | 0.002 | 0.026 | 0.001 | 0.012 | 0.002 | |
| 0.000 | 0.487 | 0.000 | 0.226 | 0.000 | 0.105 | 0.001 | 0.044 | 0.010 | 0.002 | 0.022 | 0.001 | 0.052 | 0.000 | 0.010 | 0.002 | 0.024 | 0.001 | 0.011 | 0.002 |
| 0.025 | 0.000 | 0.703 | 0.000 | 0.037 | 0.000 | 0.088 | 0.000 | 0.065 | 0.000 | 0.003 | 0.002 | 0.008 | 0.001 | 0.000 | 0.043 | 0.000 | 0.018 | 0.005 | 0.001 |
| 0.000 | 0.076 | 0.000 | 0.703 | 0.000 | 0.051 | 0.000 | 0.021 | 0.000 | 0.021 | 0.003 | 0.002 | 0.008 | 0.001 | 0.032 | 0.000 | 0.075 | 0.000 | 0.005 | 0.001 |
| 0.091 | 0.001 | 0.063 | 0.001 | 0.331 | 0.000 | 0.032 | 0.000 | 0.006 | 0.012 | 0.031 | 0.002 | 0.030 | 0.002 | 0.044 | 0.002 | 0.043 | 0.002 | 0.008 | 0.009 |
| 0.000 | 0.223 | 0.000 | 0.320 | 0.000 | 0.262 | 0.001 | 0.063 | 0.005 | 0.010 | 0.006 | 0.008 | 0.024 | 0.002 | 0.008 | 0.005 | 0.034 | 0.001 | 0.028 | 0.002 |
| 0.025 | 0.000 | 0.018 | 0.000 | 0.038 | 0.000 | 0.701 | 0.000 | 0.002 | 0.003 | 0.004 | 0.002 | 0.065 | 0.000 | 0.005 | 0.001 | 0.093 | 0.000 | 0.043 | 0.000 |
| 0.000 | 0.076 | 0.000 | 0.110 | 0.000 | 0.051 | 0.000 | 0.681 | 0.002 | 0.003 | 0.003 | 0.002 | 0.000 | 0.020 | 0.005 | 0.001 | 0.000 | 0.014 | 0.000 | 0.031 |
| 0.003 | 0.011 | 0.229 | 0.000 | 0.012 | 0.002 | 0.029 | 0.001 | 0.469 | 0.000 | 0.025 | 0.001 | 0.058 | 0.001 | 0.000 | 0.101 | 0.001 | 0.043 | 0.013 | 0.002 |
| 0.082 | 0.000 | 0.001 | 0.034 | 0.013 | 0.003 | 0.031 | 0.001 | 0.000 | 0.501 | 0.001 | 0.036 | 0.002 | 0.015 | 0.078 | 0.000 | 0.185 | 0.000 | 0.013 | 0.002 |
| 0.009 | 0.038 | 0.020 | 0.018 | 0.103 | 0.003 | 0.100 | 0.003 | 0.040 | 0.009 | 0.211 | 0.002 | 0.206 | 0.002 | 0.098 | 0.004 | 0.095 | 0.004 | 0.018 | 0.019 |
| 0.226 | 0.001 | 0.016 | 0.015 | 0.020 | 0.012 | 0.084 | 0.003 | 0.001 | 0.215 | 0.001 | 0.176 | 0.006 | 0.042 | 0.019 | 0.013 | 0.079 | 0.003 | 0.065 | 0.004 |
| 0.002 | 0.010 | 0.005 | 0.005 | 0.011 | 0.002 | 0.206 | 0.000 | 0.011 | 0.002 | 0.023 | 0.001 | 0.422 | 0.000 | 0.011 | 0.002 | 0.196 | 0.000 | 0.091 | 0.000 |
| 0.095 | 0.000 | 0.007 | 0.006 | 0.015 | 0.003 | 0.001 | 0.038 | 0.001 | 0.090 | 0.001 | 0.042 | 0.000 | 0.557 | 0.014 | 0.003 | 0.001 | 0.040 | 0.001 | 0.087 |
| 0.014 | 0.006 | 0.002 | 0.058 | 0.053 | 0.002 | 0.051 | 0.002 | 0.001 | 0.088 | 0.035 | 0.003 | 0.034 | 0.003 | 0.319 | 0.000 | 0.312 | 0.000 | 0.009 | 0.010 |
| 0.011 | 0.005 | 0.324 | 0.000 | 0.010 | 0.006 | 0.040 | 0.001 | 0.214 | 0.000 | 0.006 | 0.009 | 0.027 | 0.002 | 0.000 | 0.251 | 0.001 | 0.060 | 0.031 | 0.002 |
| 0.004 | 0.002 | 0.000 | 0.016 | 0.006 | 0.001 | 0.110 | 0.000 | 0.000 | 0.024 | 0.004 | 0.002 | 0.073 | 0.000 | 0.036 | 0.000 | 0.672 | 0.000 | 0.049 | 0.000 |
| 0.004 | 0.002 | 0.113 | 0.000 | 0.006 | 0.001 | 0.000 | 0.015 | 0.075 | 0.000 | 0.004 | 0.002 | 0.000 | 0.023 | 0.000 | 0.050 | 0.000 | 0.668 | 0.000 | 0.035 |
| 0.010 | 0.004 | 0.007 | 0.006 | 0.008 | 0.005 | 0.272 | 0.000 | 0.00 | 0.009 | 0.00 | 0.008 | 0.179 | 0.000 | 0.008 | 0.005 | 0.258 | 0.000 | 0.211 | 0.000 |
| 0.020 | 0.009 | 0.014 | 0.013 | 0.073 | 0.002 | 0.002 | 0.078 | 0.009 | 0.019 | 0.048 | 0.004 | 0.002 | 0.118 | 0.070 | 0.003 | 0.002 | 0.082 | 0.000 | 0.432 |
0.980 | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 0.974 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.048 | 0.000 | 0.033 | 0.000 | 0.748 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.129 | 0.000 | 0.185 | 0.000 | 0.650 | 0.000 | 0.036 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.973 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.980 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.031 | 0.001 | 0.001 | 0.012 | 0.000 | 0.003 | 0.000 | 0.033 | 0.000 | 0.737 | 0.000 | 0.167 | 0.000 | 0.011 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 |
| 0.180 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.000 | 0.000 | 0.171 | 0.000 | 0.600 | 0.000 | 0.033 | 0.000 | 0.002 | 0.002 | 0.000 | 0.008 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.962 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.007 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.989 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.005 |
| 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.749 | 0.000 | 0.170 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.193 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.127 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.643 | 0.000 | 0.036 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.998 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.168 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.111 | 0.000 | 0.000 | 0.000 | 0.160 | 0.000 | 0.561 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.055 | 0.000 | 0.000 | 0.000 | 0.039 | 0.000 | 0.868 |
1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.001 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.002 | 0.000 | 0.004 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.992 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.996 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.993 | 0.000 | 0.001 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.990 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.998 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |