Research article Special Issues

How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology

  • Received: 05 May 2020 Accepted: 16 July 2020 Published: 24 July 2020
  • A prototype SIR model with vaccination at birth is analyzed in terms of the stability of its endemic equilibrium. The information available on the disease influences the parentso decision on whether vaccinate or not. This information is modeled with a delay according to the Erlang distribution. The latter includes the degenerate case of fading memory as well as the limiting case of concentrated memory. The linear chain trick is the essential tool used to investigate the general case. Besides its novel analysis and that of the concentrated case, it is showed that through the linear chain trick a distributed delay approaches a discrete delay at a linear rate. A rigorous proof is given in terms of the eigenvalues of the associated linearized problems and extension to general models is also provided. The work is completed with several computations and relevant experimental results.

    Citation: Alessia Andò, Dimitri Breda, Giulia Gava. How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5059-5084. doi: 10.3934/mbe.2020273

    Related Papers:

    [1] Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu . Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences and Engineering, 2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503
    [2] Inna Samuilik, Felix Sadyrbaev . On trajectories of a system modeling evolution of genetic networks. Mathematical Biosciences and Engineering, 2023, 20(2): 2232-2242. doi: 10.3934/mbe.2023104
    [3] Yujing Qiao, Ning Lv, Baoming Jia . Multiview intelligent networking based on the genetic evolution algorithm for precise 3D measurements. Mathematical Biosciences and Engineering, 2023, 20(8): 14260-14280. doi: 10.3934/mbe.2023638
    [4] Yanyun Li, Juhua Liang . Models for determining the optimal switching time in chemical control of pest with pesticide resistance. Mathematical Biosciences and Engineering, 2021, 18(1): 471-494. doi: 10.3934/mbe.2021026
    [5] Chun Li, Ying Chen, Zhijin Zhao . Frequency hopping signal detection based on optimized generalized S transform and ResNet. Mathematical Biosciences and Engineering, 2023, 20(7): 12843-12863. doi: 10.3934/mbe.2023573
    [6] Kongfu Hu, Lei Wang, Jingcao Cai, Long Cheng . An improved genetic algorithm with dynamic neighborhood search for job shop scheduling problem. Mathematical Biosciences and Engineering, 2023, 20(9): 17407-17427. doi: 10.3934/mbe.2023774
    [7] Zhilan Feng, Carlos Castillo-Chavez . The influence of infectious diseases on population genetics. Mathematical Biosciences and Engineering, 2006, 3(3): 467-483. doi: 10.3934/mbe.2006.3.467
    [8] Bowen Ding, Zhaobin Ma, Shuoyan Ren, Yi Gu, Pengjiang Qian, Xin Zhang . A genetic algorithm with two-step rank-based encoding for closed-loop supply chain network design. Mathematical Biosciences and Engineering, 2022, 19(6): 5925-5956. doi: 10.3934/mbe.2022277
    [9] Lorenzo Mari, Marino Gatto, Renato Casagrandi . Local resource competition and the skewness of the sex ratio: a demographic model. Mathematical Biosciences and Engineering, 2008, 5(4): 813-830. doi: 10.3934/mbe.2008.5.813
    [10] Jesse Berwald, Marian Gidea . Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences and Engineering, 2014, 11(4): 723-740. doi: 10.3934/mbe.2014.11.723
  • A prototype SIR model with vaccination at birth is analyzed in terms of the stability of its endemic equilibrium. The information available on the disease influences the parentso decision on whether vaccinate or not. This information is modeled with a delay according to the Erlang distribution. The latter includes the degenerate case of fading memory as well as the limiting case of concentrated memory. The linear chain trick is the essential tool used to investigate the general case. Besides its novel analysis and that of the concentrated case, it is showed that through the linear chain trick a distributed delay approaches a discrete delay at a linear rate. A rigorous proof is given in terms of the eigenvalues of the associated linearized problems and extension to general models is also provided. The work is completed with several computations and relevant experimental results.




    [1] F. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995.
    [2] O. Diekmann, M. Gyllenberg, J. A. J. Metz, Finite dimensional state representation of linear and nonlinear delay systems, J. Dynam. Differ. Equations, 30 (2018), 1439-1467.
    [3] A. K. Erlang, Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges, Post Office Elec. Eng., (1917), 189-197.
    [4] N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomathematics 27, Springer Verlag, Berlin, 1978.
    [5] N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge Studies in Mathematical Biology 8, Cambridge Univeristy Press, Cambridge, 1989.
    [6] D. Fargue, Reductibilitè des systèmes héréditaires à des systèmes dynamiques, C.R. Acad. Sci. Paris Sér. A-B, 277 (1973), 471-473.
    [7] D. Fargue, Reductibilitè des systèmes héréditaires, Int. J. Nonlin. Mech., 9 (1974), 331-338.
    [8] T. Vogel, Théorie Des Systèmes Evolutifs, Gautier Villars, Paris, 1965.
    [9] D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Sys., 15 (2016), 1-23.
    [10] S. Busenberg, C. Travis, On the use of reducible-functional differential equations in biological models, J. Math. Anal. Appl., 89 (1982), 46-66.
    [11] K. L. Cooke, Z. Grossman, Discrete delay, distributed delays and stability switches, J. Math. Anal. Appl., 86 (1982), 592-627.
    [12] E. Beretta, D. Breda, Discrete or distributed delay? Effects on stability of population growth, Math. Biosci. Eng., 13 (2016), 19-41.
    [13] C. Barril, A. Calsina, J. Ripoll, A practical approach to R0 in continuous-time ecological models, Math. Meth. Appl. Sci., 41 (2018), 8432-8445.
    [14] A. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. Roy. Soc. Lond. B, 268 (2001), 985-993.
    [15] A. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001), 59-71.
    [16] C. Bauch, A. d'Onofrio, P. Manfredi, Behavioral epidemiology of infectious diseases: An overview, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. d'Onofrio), Springer-Verlag, New York, (2013), 1-19.
    [17] P. Manfredi, A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer-Verlag, New York, 2013.
    [18] Z. Wang, T. C. Bauch, S. Bhattacharyya, A. d'Onofrio, P. Manfredi, M. Percg, et al., Statistical physics of vaccination, Phys. Rep., 664 (2016), 1-113.
    [19] B. Buonomo, G. Carbone, A. d'Onofrio, Effect of seasonality on the dynamics of an imitationbased vaccination model with public health intervention, Math. Biosci., 15 (2018), 299-321.
    [20] B. Buonomo, A. d'Onofrio, D. Lacitignola, Global stability of an sir epidemic model with information dependent vaccination, Math. Biosci., 216 (2008), 9-16.
    [21] B. Buonomo, A. d'Onofrio, D. Lacitignola, The geometric approach to global stability in behavioral epidemiology, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. d'Onofrio), Springer-Verlag, New York, (2013), 289-308.
    [22] A. d'Onofrio, P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theoret. Biol., 256 (2009), 473-478.
    [23] A. d'Onofrio, P. Manfredi, Vaccine demand driven by vaccine side effects: Dynamic implications for sir diseases, J. Theoret. Biol., 264 (2010), 237-252.
    [24] A. d'Onofrio, P. Manfredi, P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: an imitation-game approach, J. Theoret. Biol., 273 (2011), 63-71.
    [25] A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour and the dynamics of vaccine preventabe infections, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. d'Onofrio), Springer-Verlag, New York, (2013), 267-287.
    [26] S. Funk, M. Salathé, V. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247-1256.
    [27] A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol., 71 (2007), 301-317.
    [28] A. d'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput, 151 (2004), 181-187.
    [29] A. Calsina, J. Ripoll, Hopf bifurcation in a structured population model for the sexual phase of monogonont rotifers, J. Math. Biol., 45 (2002), 22-36.
    [30] D. Breda, O. Diekmann, S. Maset, R. Vermiglio, A numerical approach for investigating the stability of equilibria for structured population models, J. Biol. Dyn., 7 (2013), 4-20.
    [31] D. Breda, S. Maset, R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495.
    [32] D. Breda, S. Maset, R. Vermiglio, Stability of Linear Delay Differential Equations-A Numerical Approach with MATLAB, Springer, New York, 2015.
    [33] N. Olgac, R. Sipahi, Kernel and offspring concepts for the stability robustness of multiple time delayed systems (MTDS), J. Dyn. Syst. T. ASME, 129 (2006), 245-251.
    [34] O. Diekmann, P. Getto, M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2008), 1023-1069.
    [35] D. Breda, P. Getto, J. Sánchez Sanz, R. Vermiglio, Computing the eigenvalues of realistic Daphnia models by pseudospectral methods, SIAM J. Sci. Comput., 37 (2015), 2607-2629.
    [36] H. A. Priestley, Introduction to Complex Analysis, Oxford University Press, New York, 1990.
    [37] L. Fanti, P. Manfredi, The Solow's model with endogenous population: A neoclassical growth cycle model, J. Econ. Dev., 28 (2003), 103-115.
    [38] P. Manfredi, L. Fanti, Cycles in dynamic economic modelling, Econ. Model., 21 (2004), 573-594.
    [39] D. Breda, D. Liessi, Approximation of eigenvalues of evolution operators for linear renewal equations, SIAM J. Numer. Anal., 56 (2018), 1456-1481.
    [40] D. Breda, S. Maset, R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, SIAM J. Numer. Anal., 50 (2012), 1456-1483.
  • This article has been cited by:

    1. I.P. Cabrera, P. Cordero, G. Gutiérrez, J. Martínez, M. Ojeda-Aciego, Finitary coalgebraic multisemilattices and multilattices, 2012, 219, 00963003, 31, 10.1016/j.amc.2011.10.081
    2. Irene Paniello, Genetic coalgebras and their cubic stochastic matrices, 2017, 16, 0219-4988, 1750239, 10.1142/S0219498817502395
    3. Manuel Arenas, Alicia Labra, Irene Paniello, Lotka–Volterra coalgebras, 2021, 0308-1087, 1, 10.1080/03081087.2021.1882372
    4. M. Hamidi, Arsham Borumand Saeid, EQ-algebras based on fuzzy hyper EQ-filters, 2019, 23, 1432-7643, 5289, 10.1007/s00500-018-3456-7
    5. Wei Wang, Xiao-Long Xin, On fuzzy filters of Heyting-algebras, 2011, 4, 1937-1179, 1611, 10.3934/dcdss.2011.4.1611
    6. Irene Paniello, In-evolution operators in genetic coalgebras, 2021, 614, 00243795, 197, 10.1016/j.laa.2020.03.032
    7. I. Paniello, Evolution coalgebras, 2019, 67, 0308-1087, 1539, 10.1080/03081087.2018.1460795
    8. I. Paniello, Backwards genetic inheritance through coalgebra-graphs, 2017, 65, 0308-1087, 943, 10.1080/03081087.2016.1217824
    9. I. Paniello, Evolution coalgebras on chicken populations, 2020, 68, 0308-1087, 528, 10.1080/03081087.2018.1508408
    10. M. Hamidi, A. Broumand Saeid, EQ-algebras based on hyper EQ-algebras, 2018, 24, 1405-213X, 11, 10.1007/s40590-016-0159-x
    11. Irene Paniello, A Coalgebraic Structure on Bisexual Populations, 2020, 1386-923X, 10.1007/s10468-020-09978-6
    12. Mingze Zhao, Huilan Li, A pair of dual Hopf algebras on permutations, 2021, 6, 2473-6988, 5106, 10.3934/math.2021302
    13. Baltasar Trancón y Widemann, 2013, Chapter 1483, 978-1-4419-9862-0, 434, 10.1007/978-1-4419-9863-7_1483
    14. Peter D Jarvis, Jeremy G Sumner, Systematics and symmetry in molecular phylogenetic modelling: perspectives from physics, 2019, 52, 1751-8113, 453001, 10.1088/1751-8121/ab305b
    15. Irene Paniello, Marginal distributions of genetic coalgebras, 2014, 68, 0303-6812, 1071, 10.1007/s00285-013-0663-9
    16. Irene Paniello, On evolution operators of genetic coalgebras, 2017, 74, 0303-6812, 149, 10.1007/s00285-016-1025-1
    17. Irene Paniello, Stochastic matrices arising from genetic inheritance, 2011, 434, 00243795, 791, 10.1016/j.laa.2010.09.042
    18. Farrukh Mukhamedov, Izzat Qaralleh, On S-Evolution Algebras and Their Enveloping Algebras, 2021, 9, 2227-7390, 1195, 10.3390/math9111195
    19. Manuel Ceballos, Raúl M. Falcón, Juan Núñez-Valdés, Ángel F. Tenorio, A historical perspective of Tian’s evolution algebras, 2022, 40, 07230869, 819, 10.1016/j.exmath.2021.11.004
    20. Farrukh Mukhamedov, Izzat Qaralleh, Entropy Treatment of Evolution Algebras, 2022, 24, 1099-4300, 595, 10.3390/e24050595
    21. Farrukh Mukhamedov, Izzat Qaralleh, On Extendibility of Evolution Subalgebras Generated by Idempotents, 2023, 11, 2227-7390, 2764, 10.3390/math11122764
    22. Irene Paniello, Skewed comultiplications in genetic coalgebras, 2024, 23, 0219-4988, 10.1142/S0219498824500506
    23. Manuel Arenas, Alicia Labra, Irene Paniello, On the structure of Lotka-Volterra coalgebras, 2024, 0092-7872, 1, 10.1080/00927872.2023.2301516
    24. Irene Paniello, Backwards inheritance in evolution coalgebras of chicken populations, 2024, 23, 0219-4988, 10.1142/S0219498824502396
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5345) PDF downloads(256) Cited by(4)

Article outline

Figures and Tables

Figures(13)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog