[1]
|
F. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995.
|
[2]
|
O. Diekmann, M. Gyllenberg, J. A. J. Metz, Finite dimensional state representation of linear and nonlinear delay systems, J. Dynam. Differ. Equations, 30 (2018), 1439-1467.
|
[3]
|
A. K. Erlang, Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges, Post Office Elec. Eng., (1917), 189-197.
|
[4]
|
N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomathematics 27, Springer Verlag, Berlin, 1978.
|
[5]
|
N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge Studies in Mathematical Biology 8, Cambridge Univeristy Press, Cambridge, 1989.
|
[6]
|
D. Fargue, Reductibilitè des systèmes héréditaires à des systèmes dynamiques, C.R. Acad. Sci. Paris Sér. A-B, 277 (1973), 471-473.
|
[7]
|
D. Fargue, Reductibilitè des systèmes héréditaires, Int. J. Nonlin. Mech., 9 (1974), 331-338.
|
[8]
|
T. Vogel, Théorie Des Systèmes Evolutifs, Gautier Villars, Paris, 1965.
|
[9]
|
D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Sys., 15 (2016), 1-23.
|
[10]
|
S. Busenberg, C. Travis, On the use of reducible-functional differential equations in biological models, J. Math. Anal. Appl., 89 (1982), 46-66.
|
[11]
|
K. L. Cooke, Z. Grossman, Discrete delay, distributed delays and stability switches, J. Math. Anal. Appl., 86 (1982), 592-627.
|
[12]
|
E. Beretta, D. Breda, Discrete or distributed delay? Effects on stability of population growth, Math. Biosci. Eng., 13 (2016), 19-41.
|
[13]
|
C. Barril, A. Calsina, J. Ripoll, A practical approach to R0 in continuous-time ecological models, Math. Meth. Appl. Sci., 41 (2018), 8432-8445.
|
[14]
|
A. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. Roy. Soc. Lond. B, 268 (2001), 985-993.
|
[15]
|
A. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001), 59-71.
|
[16]
|
C. Bauch, A. d'Onofrio, P. Manfredi, Behavioral epidemiology of infectious diseases: An overview, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. d'Onofrio), Springer-Verlag, New York, (2013), 1-19.
|
[17]
|
P. Manfredi, A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer-Verlag, New York, 2013.
|
[18]
|
Z. Wang, T. C. Bauch, S. Bhattacharyya, A. d'Onofrio, P. Manfredi, M. Percg, et al., Statistical physics of vaccination, Phys. Rep., 664 (2016), 1-113.
|
[19]
|
B. Buonomo, G. Carbone, A. d'Onofrio, Effect of seasonality on the dynamics of an imitationbased vaccination model with public health intervention, Math. Biosci., 15 (2018), 299-321.
|
[20]
|
B. Buonomo, A. d'Onofrio, D. Lacitignola, Global stability of an sir epidemic model with information dependent vaccination, Math. Biosci., 216 (2008), 9-16.
|
[21]
|
B. Buonomo, A. d'Onofrio, D. Lacitignola, The geometric approach to global stability in behavioral epidemiology, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. d'Onofrio), Springer-Verlag, New York, (2013), 289-308.
|
[22]
|
A. d'Onofrio, P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theoret. Biol., 256 (2009), 473-478.
|
[23]
|
A. d'Onofrio, P. Manfredi, Vaccine demand driven by vaccine side effects: Dynamic implications for sir diseases, J. Theoret. Biol., 264 (2010), 237-252.
|
[24]
|
A. d'Onofrio, P. Manfredi, P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: an imitation-game approach, J. Theoret. Biol., 273 (2011), 63-71.
|
[25]
|
A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour and the dynamics of vaccine preventabe infections, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. d'Onofrio), Springer-Verlag, New York, (2013), 267-287.
|
[26]
|
S. Funk, M. Salathé, V. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247-1256.
|
[27]
|
A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol., 71 (2007), 301-317.
|
[28]
|
A. d'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput, 151 (2004), 181-187.
|
[29]
|
A. Calsina, J. Ripoll, Hopf bifurcation in a structured population model for the sexual phase of monogonont rotifers, J. Math. Biol., 45 (2002), 22-36.
|
[30]
|
D. Breda, O. Diekmann, S. Maset, R. Vermiglio, A numerical approach for investigating the stability of equilibria for structured population models, J. Biol. Dyn., 7 (2013), 4-20.
|
[31]
|
D. Breda, S. Maset, R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495.
|
[32]
|
D. Breda, S. Maset, R. Vermiglio, Stability of Linear Delay Differential Equations-A Numerical Approach with MATLAB, Springer, New York, 2015.
|
[33]
|
N. Olgac, R. Sipahi, Kernel and offspring concepts for the stability robustness of multiple time delayed systems (MTDS), J. Dyn. Syst. T. ASME, 129 (2006), 245-251.
|
[34]
|
O. Diekmann, P. Getto, M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2008), 1023-1069.
|
[35]
|
D. Breda, P. Getto, J. Sánchez Sanz, R. Vermiglio, Computing the eigenvalues of realistic Daphnia models by pseudospectral methods, SIAM J. Sci. Comput., 37 (2015), 2607-2629.
|
[36]
|
H. A. Priestley, Introduction to Complex Analysis, Oxford University Press, New York, 1990.
|
[37]
|
L. Fanti, P. Manfredi, The Solow's model with endogenous population: A neoclassical growth cycle model, J. Econ. Dev., 28 (2003), 103-115.
|
[38]
|
P. Manfredi, L. Fanti, Cycles in dynamic economic modelling, Econ. Model., 21 (2004), 573-594.
|
[39]
|
D. Breda, D. Liessi, Approximation of eigenvalues of evolution operators for linear renewal equations, SIAM J. Numer. Anal., 56 (2018), 1456-1481.
|
[40]
|
D. Breda, S. Maset, R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, SIAM J. Numer. Anal., 50 (2012), 1456-1483.
|