Research article

Models for determining the optimal switching time in chemical control of pest with pesticide resistance

  • Received: 17 September 2020 Accepted: 25 November 2020 Published: 09 December 2020
  • In this paper, we developed a novel resistant equation of pest to pesticide with external~induced resistance and genetic resistance, and then the analytical formula of this equation under different level of dominance of resistance allele is given. Further, we proposed the new methods of modelling pest populations with discrete generations and impulsive chemical control and developed a multi-scale system combining descriptions of pest populations and their genetic evolution. The threshold condition~of pest eradication solution was investigated in more detail, which allows us to address the optimal time when different types of pesticides should be switched. Moreover, we also provided a pesticide switching method guided by the economic injury level (EIL), and then some biological implications have been discussed in terms of pest control.

    Citation: Yanyun Li, Juhua Liang. Models for determining the optimal switching time in chemical control of pest with pesticide resistance[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 471-494. doi: 10.3934/mbe.2021026

    Related Papers:

  • In this paper, we developed a novel resistant equation of pest to pesticide with external~induced resistance and genetic resistance, and then the analytical formula of this equation under different level of dominance of resistance allele is given. Further, we proposed the new methods of modelling pest populations with discrete generations and impulsive chemical control and developed a multi-scale system combining descriptions of pest populations and their genetic evolution. The threshold condition~of pest eradication solution was investigated in more detail, which allows us to address the optimal time when different types of pesticides should be switched. Moreover, we also provided a pesticide switching method guided by the economic injury level (EIL), and then some biological implications have been discussed in terms of pest control.


    加载中


    [1] M. L. Flint, Integrated Pest Management for Walnuts, 2nd edition, University of California, Oakland, CA, publication 3270, 1987.
    [2] J. C. Van, J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Entomol., 33 (1988), 239–250. doi: 10.1146/annurev.en.33.010188.001323
    [3] J. C. Van, Integrated pest management in protected crops, Integr. pest manage.: Prin. Syst. Dev., 17 (1995), 311–320.
    [4] J. C. Van, Success in biological control of arthropods by augmentation of natural enemies, Biol. Control: Mea. Success, (2000), 77–89.
    [5] G. P. Georghiou, Pest Resistance to Pesticides, Springer Science, 2012.
    [6] T. M. Ha, A Review on the development of integrated pest management and its integration in modern agriculture, Asian J. Agric. Food. Sci., 2 (2014), 336–340.
    [7] M. J. Kotchen, Incorporating resistance in pesticide management: A dynamic regional approach, N. Y.: Springer Verlag, (1999), 126–135.
    [8] M. B. Thomas, Ecological approaches and the development of 'truly integrated' pest management, Proc. Nat. Acad. Sci., 96 (1999), 5944–5951. doi: 10.1073/pnas.96.11.5944
    [9] Y. Dumont, J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J. Math. Biol., 65 (2012), 809–854. doi: 10.1007/s00285-011-0477-6
    [10] J. H. Liang, S. Y. Tang, J. J. Nieto, R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249–257. doi: 10.1016/j.mbs.2013.07.008
    [11] J. H. Liang, S. Y. Tang, R. A. Cheke, Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance, Commun. Nonlinear Sci. Numer. Simulat., 36 (2016), 327–341. doi: 10.1016/j.cnsns.2015.12.014
    [12] R. Nauen, Insecticide resistance in disease vectors of public health importance, Pest Manage. Sci., 63 (2007), 628–633. doi: 10.1002/ps.1406
    [13] S. Barbosa, I. M. Hastings, The importance of modelling the spread of insecticide resistance in a heterogeneous environment: The example of adding synergists to bed nets, Malar. J., 11 (2012), 1–12. doi: 10.1186/1475-2875-11-1
    [14] P. L. Birget, J. C. Koella, A genetic model of the effects of insecticide-treated bed nets on the evolution of insecticide-resistance, Evol. Med. Public Health, 2015 (2015), 205–215. doi: 10.1093/emph/eov019
    [15] R. Busi, S. B. Powles, H. J. Beckie, M. Renton, Rotations and mixtures of soil-applied herbicides delay resistance, Pest Manage. Sci., 76 (2020), 487–496. doi: 10.1002/ps.5534
    [16] L. V. V. Arevalo, R. A. K. Carrillo, S. E. D. Aleman, Simple models for biological control of crop pests and their application, Math. Methods Appl. Sci., 43 (2020), 8006–8014. doi: 10.1002/mma.5928
    [17] L. Guo, M. A. Muminov, G. Wu, X. Liang, C. Li, J. Meng, Large reductions in pesticides made possible by use of an insect-trapping lamp: A case study in a winter wheat-summer maize rotation system, Pest Manage. Sci., 74 (2018), 1728–1735. doi: 10.1002/ps.4871
    [18] R. M. May, A. P. Dobson, Population dynamics and the rate of evolution of pesticide resistance, Pestic. Resist.: Strategies Tactics Manage., (1986), 170–193.
    [19] S. Y. Tang, Y. N. Xiao, R. A. Cheke, Multiple attractors of host-parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak, Theor. Popul. Biol., 73 (2008), 181–197. doi: 10.1016/j.tpb.2007.12.001
    [20] X. Wang, Z. H. Xu, S. Y. Tang, R. A. Cheke, Cumulative effects of incorrect use of pesticides can lead to catastrophic outbreaks of pests, Chaos Solitons Fractals, 100 (2017), 7–19. doi: 10.1016/j.chaos.2017.04.030
    [21] J. H. Liang, Y. H. Zhu, C. C. Xiang, S. Y. Tang, Travelling waves and paradoxical effects in a discrete-time growth-dispersal model, Appl. Math. Modell., 59 (2018), 132–146. doi: 10.1016/j.apm.2018.01.039
    [22] C. Miller, A. Munoz, F. Pena, R. Rael, A. A. Yakubu, To Bt or Not to Bt balancing spatial genetic heterogeneity to control the evolution of ostrinia nubilalis, Biom. Tech. Rep., (2001).
    [23] A. Hastings, Population Biology: Concepts and Models, New York: Springer, 1997.
    [24] M. Nei, Modification of linkage intensity by natural selection, Genetics, 57 (1967), 625–641. doi: 10.1093/genetics/57.3.625
    [25] S. Barbosa, I. M. Hastings, The importance of modelling the spread of insecticide resistance in a heterogeneous environment: The example of adding synergists to bed nets, Malar. J., 11 (2012), 258–258. doi: 10.1186/1475-2875-11-258
    [26] A. South, I. M. Hastings, Insecticide resistance evolution with mixtures and sequences: A model-based explanation, Malar. J., 17 (2018), 1–20. doi: 10.1186/s12936-017-2149-5
    [27] D. J. Guillaume, J. W. Michael, When mother knows best: A population genetic model of transgenerational versus intragenerational plasticity, J. Evol. Biol., 33 (2020), 127–137. doi: 10.1111/jeb.13545
    [28] S. He, X. H. Zhang, J. H. Liang, S. Y. Tang, Multiscale modelling the effects of CI genetic evolution in mosquito population on the control of dengue fever, Sci. Rep., 7 (2018), 13895–13895.
    [29] J. B. Haldane, S. D.Jayakar, The solution of some equations occurring in population genetics, J. Genet., 58 (1963), 291–317. doi: 10.1007/BF02986300
    [30] R. Nielsen, M. Slatkin, An Introduction to Population Genetics: Theory and Applications, New York, 1970.
    [31] M. Nei, Molecular Population Genetics and Evolution, Texas University, Houston, USA. 1975.
    [32] R. J. Beverton, S. J. Holt, The theory of fishing, Sea Fish., (1956), 372–441.
    [33] H. Cymra, J. S. Robert, Attenuation in the almost periodic Beverton-Holt equation, J. Differ. Equations Appl., 24 (2019), 542–547.
    [34] L. Berezansky, E. Braverman, On impulsive Beverton-Holt difference equations and their applications, J. Differ. Equations Appl., 10 (2004), 851–868. doi: 10.1080/10236190410001726421
    [35] V. L. Kocic, Global behaviour of solutions of a nonautonomous delay logistic difference equation, J. Differ. Equations Appl., 17 (2004), 487–504.
    [36] V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Differ. Equations Appl., 11 (2005), 415–422. doi: 10.1080/10236190412331335463
    [37] S. Y. Tang, R. A. Cheke, Y. N. Xiao, Optimal impulsive harvesting on non-autonomous BevertonHolt difference equations, Nonlinear Anal., 65 (2006), 2311–2341. doi: 10.1016/j.na.2006.02.049
    [38] Jiao, S. Cai, L. Chen, Analysis of a stage-structured predator-prey system with birth pulse and impulsive harvesting at different moments, Nonlinear Anal.: Real World Appl., 12 (2011), 2232–2244. doi: 10.1016/j.nonrwa.2011.01.005
    [39] Y. S. Tan, J. H. Liang, S. Y. Tang, The dynamical behavior of non-smooth system with impulsive control strategies, Int. J. Biomath., 5 (2012), 1260018. doi: 10.1142/S1793524512600182
    [40] J. H. Liang, S. Y. Tang, Optimal dosage and economic threshold of multiple pesticide applications for pest control, Math. Comput. Model., 51 (2010), 487–503. doi: 10.1016/j.mcm.2009.11.021
    [41] J. H. Liang, S. Y. Tang, R. A. Cheke, J. Wu, Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance, Bull. Math. Biol., 75 (2013), 2167–2195. doi: 10.1007/s11538-013-9886-6
    [42] J. H. Liang, S. Y. Tang, R. A. Cheke, J. Wu, Models for determining how many natural enemies to release inoculatively in combinations of biological and chemical control with pesticide resistance, J. Math. Anal. Appl., 422 (2015), 1479–1503. doi: 10.1016/j.jmaa.2014.09.048
    [43] J. H. Liang, S. Y. Tang, R. A. Cheke, An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics, Nonlinear Anal.: Real World Appl., 13 (2012), 2352–2374. doi: 10.1016/j.nonrwa.2012.02.003
    [44] P. P. Wang, W. J. Qin, G. Y. TAng, Modelling and Analysis of a Host-Parasitoid Impulsive Ecosystem under Resource Limitation, Complexity, 2019 (2019), 1–12.
    [45] Y. Tian, S. Y. Tang, R. A. Cheke, Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases, Math. Modell. Anal., 24 (2019), 134–154. doi: 10.3846/mma.2019.010
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(988) PDF downloads(125) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog