Citation: Yanyun Li, Juhua Liang. Models for determining the optimal switching time in chemical control of pest with pesticide resistance[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 471-494. doi: 10.3934/mbe.2021026
[1] | M. L. Flint, Integrated Pest Management for Walnuts, 2^{nd} edition, University of California, Oakland, CA, publication 3270, 1987. |
[2] | J. C. Van, J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Entomol., 33 (1988), 239–250. doi: 10.1146/annurev.en.33.010188.001323 |
[3] | J. C. Van, Integrated pest management in protected crops, Integr. pest manage.: Prin. Syst. Dev., 17 (1995), 311–320. |
[4] | J. C. Van, Success in biological control of arthropods by augmentation of natural enemies, Biol. Control: Mea. Success, (2000), 77–89. |
[5] | G. P. Georghiou, Pest Resistance to Pesticides, Springer Science, 2012. |
[6] | T. M. Ha, A Review on the development of integrated pest management and its integration in modern agriculture, Asian J. Agric. Food. Sci., 2 (2014), 336–340. |
[7] | M. J. Kotchen, Incorporating resistance in pesticide management: A dynamic regional approach, N. Y.: Springer Verlag, (1999), 126–135. |
[8] | M. B. Thomas, Ecological approaches and the development of 'truly integrated' pest management, Proc. Nat. Acad. Sci., 96 (1999), 5944–5951. doi: 10.1073/pnas.96.11.5944 |
[9] | Y. Dumont, J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J. Math. Biol., 65 (2012), 809–854. doi: 10.1007/s00285-011-0477-6 |
[10] | J. H. Liang, S. Y. Tang, J. J. Nieto, R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249–257. doi: 10.1016/j.mbs.2013.07.008 |
[11] | J. H. Liang, S. Y. Tang, R. A. Cheke, Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance, Commun. Nonlinear Sci. Numer. Simulat., 36 (2016), 327–341. doi: 10.1016/j.cnsns.2015.12.014 |
[12] | R. Nauen, Insecticide resistance in disease vectors of public health importance, Pest Manage. Sci., 63 (2007), 628–633. doi: 10.1002/ps.1406 |
[13] | S. Barbosa, I. M. Hastings, The importance of modelling the spread of insecticide resistance in a heterogeneous environment: The example of adding synergists to bed nets, Malar. J., 11 (2012), 1–12. doi: 10.1186/1475-2875-11-1 |
[14] | P. L. Birget, J. C. Koella, A genetic model of the effects of insecticide-treated bed nets on the evolution of insecticide-resistance, Evol. Med. Public Health, 2015 (2015), 205–215. doi: 10.1093/emph/eov019 |
[15] | R. Busi, S. B. Powles, H. J. Beckie, M. Renton, Rotations and mixtures of soil-applied herbicides delay resistance, Pest Manage. Sci., 76 (2020), 487–496. doi: 10.1002/ps.5534 |
[16] | L. V. V. Arevalo, R. A. K. Carrillo, S. E. D. Aleman, Simple models for biological control of crop pests and their application, Math. Methods Appl. Sci., 43 (2020), 8006–8014. doi: 10.1002/mma.5928 |
[17] | L. Guo, M. A. Muminov, G. Wu, X. Liang, C. Li, J. Meng, Large reductions in pesticides made possible by use of an insect-trapping lamp: A case study in a winter wheat-summer maize rotation system, Pest Manage. Sci., 74 (2018), 1728–1735. doi: 10.1002/ps.4871 |
[18] | R. M. May, A. P. Dobson, Population dynamics and the rate of evolution of pesticide resistance, Pestic. Resist.: Strategies Tactics Manage., (1986), 170–193. |
[19] | S. Y. Tang, Y. N. Xiao, R. A. Cheke, Multiple attractors of host-parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak, Theor. Popul. Biol., 73 (2008), 181–197. doi: 10.1016/j.tpb.2007.12.001 |
[20] | X. Wang, Z. H. Xu, S. Y. Tang, R. A. Cheke, Cumulative effects of incorrect use of pesticides can lead to catastrophic outbreaks of pests, Chaos Solitons Fractals, 100 (2017), 7–19. doi: 10.1016/j.chaos.2017.04.030 |
[21] | J. H. Liang, Y. H. Zhu, C. C. Xiang, S. Y. Tang, Travelling waves and paradoxical effects in a discrete-time growth-dispersal model, Appl. Math. Modell., 59 (2018), 132–146. doi: 10.1016/j.apm.2018.01.039 |
[22] | C. Miller, A. Munoz, F. Pena, R. Rael, A. A. Yakubu, To Bt or Not to Bt balancing spatial genetic heterogeneity to control the evolution of ostrinia nubilalis, Biom. Tech. Rep., (2001). |
[23] | A. Hastings, Population Biology: Concepts and Models, New York: Springer, 1997. |
[24] | M. Nei, Modification of linkage intensity by natural selection, Genetics, 57 (1967), 625–641. doi: 10.1093/genetics/57.3.625 |
[25] | S. Barbosa, I. M. Hastings, The importance of modelling the spread of insecticide resistance in a heterogeneous environment: The example of adding synergists to bed nets, Malar. J., 11 (2012), 258–258. doi: 10.1186/1475-2875-11-258 |
[26] | A. South, I. M. Hastings, Insecticide resistance evolution with mixtures and sequences: A model-based explanation, Malar. J., 17 (2018), 1–20. doi: 10.1186/s12936-017-2149-5 |
[27] | D. J. Guillaume, J. W. Michael, When mother knows best: A population genetic model of transgenerational versus intragenerational plasticity, J. Evol. Biol., 33 (2020), 127–137. doi: 10.1111/jeb.13545 |
[28] | S. He, X. H. Zhang, J. H. Liang, S. Y. Tang, Multiscale modelling the effects of CI genetic evolution in mosquito population on the control of dengue fever, Sci. Rep., 7 (2018), 13895–13895. |
[29] | J. B. Haldane, S. D.Jayakar, The solution of some equations occurring in population genetics, J. Genet., 58 (1963), 291–317. doi: 10.1007/BF02986300 |
[30] | R. Nielsen, M. Slatkin, An Introduction to Population Genetics: Theory and Applications, New York, 1970. |
[31] | M. Nei, Molecular Population Genetics and Evolution, Texas University, Houston, USA. 1975. |
[32] | R. J. Beverton, S. J. Holt, The theory of fishing, Sea Fish., (1956), 372–441. |
[33] | H. Cymra, J. S. Robert, Attenuation in the almost periodic Beverton-Holt equation, J. Differ. Equations Appl., 24 (2019), 542–547. |
[34] | L. Berezansky, E. Braverman, On impulsive Beverton-Holt difference equations and their applications, J. Differ. Equations Appl., 10 (2004), 851–868. doi: 10.1080/10236190410001726421 |
[35] | V. L. Kocic, Global behaviour of solutions of a nonautonomous delay logistic difference equation, J. Differ. Equations Appl., 17 (2004), 487–504. |
[36] | V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Differ. Equations Appl., 11 (2005), 415–422. doi: 10.1080/10236190412331335463 |
[37] | S. Y. Tang, R. A. Cheke, Y. N. Xiao, Optimal impulsive harvesting on non-autonomous BevertonHolt difference equations, Nonlinear Anal., 65 (2006), 2311–2341. doi: 10.1016/j.na.2006.02.049 |
[38] | Jiao, S. Cai, L. Chen, Analysis of a stage-structured predator-prey system with birth pulse and impulsive harvesting at different moments, Nonlinear Anal.: Real World Appl., 12 (2011), 2232–2244. doi: 10.1016/j.nonrwa.2011.01.005 |
[39] | Y. S. Tan, J. H. Liang, S. Y. Tang, The dynamical behavior of non-smooth system with impulsive control strategies, Int. J. Biomath., 5 (2012), 1260018. doi: 10.1142/S1793524512600182 |
[40] | J. H. Liang, S. Y. Tang, Optimal dosage and economic threshold of multiple pesticide applications for pest control, Math. Comput. Model., 51 (2010), 487–503. doi: 10.1016/j.mcm.2009.11.021 |
[41] | J. H. Liang, S. Y. Tang, R. A. Cheke, J. Wu, Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance, Bull. Math. Biol., 75 (2013), 2167–2195. doi: 10.1007/s11538-013-9886-6 |
[42] | J. H. Liang, S. Y. Tang, R. A. Cheke, J. Wu, Models for determining how many natural enemies to release inoculatively in combinations of biological and chemical control with pesticide resistance, J. Math. Anal. Appl., 422 (2015), 1479–1503. doi: 10.1016/j.jmaa.2014.09.048 |
[43] | J. H. Liang, S. Y. Tang, R. A. Cheke, An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics, Nonlinear Anal.: Real World Appl., 13 (2012), 2352–2374. doi: 10.1016/j.nonrwa.2012.02.003 |
[44] | P. P. Wang, W. J. Qin, G. Y. TAng, Modelling and Analysis of a Host-Parasitoid Impulsive Ecosystem under Resource Limitation, Complexity, 2019 (2019), 1–12. |
[45] | Y. Tian, S. Y. Tang, R. A. Cheke, Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases, Math. Modell. Anal., 24 (2019), 134–154. doi: 10.3846/mma.2019.010 |