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Abstract: In this paper, we developed a novel resistant equation of pest to pesticide with external in-
duced resistance and genetic resistance, and then the analytical formula of this equation under different
level of dominance of resistance allele is given. Further, we proposed the new methods of modelling
pest populations with discrete generations and impulsive chemical control and developed a multi-scale
system combining descriptions of pest populations and their genetic evolution. The threshold condi-
tion of pest eradication solution was investigated in more detail, which allows us to address the optimal
time when different types of pesticides should be switched. Moreover, we also provided a pesticide
switching method guided by the economic injury level (EIL), and then some biological implications
have been discussed in terms of pest control.
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1. Introduction

In the integrated pest management, chemical control is one of the main control tactics, and the
pesticides and other chemicals for the pest management are employed in reality [1–4]. The emergence
of chemical synthetic insecticides has made great contributions to the control of some vector insects,
agricultural pests and infectious diseases spread by them. At the same time, chemical pesticides are
easy to operate and can control pests quickly and effectively. Therefore, in a long time at present
and in the future, it is still a favorable weapon to fight vector insects and agricultural pests in rural
areas. However, due to the high frequency and large-scale use of pesticides all over the world, long
term accumulation leads to the occurrence and development of resistance and serious environmental
pollution, which results in the decrease of the sensitivity of pests to pesticides, so they are not inhibited
or poisoned by pesticides [5–8].

Therefore, how to reduce or delay the resistance of pests to pesticides, how to make the pesticides
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play their role to the maximum extent, and how to reduce the impact of pesticides on the ecological
environment are issues of agricultural administrative departments. The purpose of resistance manage-
ment is to find appropriate ways to slow down and prevent the occurrence and development of pest
resistance to pesticide, or restore resistant pest to a sensitive state. The key of resistance management
is to reduce the selection pressure of pesticides on pests [9–11]. The development of pest resistance
to pesticide is divided two types: external induced resistance and genetic resistance. The external in-
duced resistance is that the pest developed the resistance to pesticide due to the large dosage and high
frequency of pesticide spraying. Genetic resistance refers to the resistance generated by genetic inher-
itance of the resistance of the previous generation of pests to pesticides [12]. Since most of the pests
that are sensitive to pesticides are killed during the use of pesticides, the surviving pests with pesticide
resistance will pass on the resistance genes to the next generation. Therefore, with the change of gen-
erations, the proportion of pests carrying resistance genes becomes higher and higher, and the effect
of pesticides gradually decreases, which seriously affects the success or failure of pest and disease
control. In order to restrain the resistance of pest to pesticide, some principles have been proposed in-
cluding rotation or switching between different types of pesticides, using biological control techniques,
delaying the emergence of resistance, restoring the sensitivity of pests to pesticides and so on [13–17].

Recently, pest management models with pest resistance to pesticide have been widely studied. Dob-
son and May combining population dynamics and genetics modelled the development of pest resistance
to pesticide [18]. Liang et al. developed a continuous pest population growth model with both evolu-
tion of pesticide resistance and instantaneous pesticide applications, and studied the optimal time for
switching between different kinds of pesticides under three different threshold levels [10]. Considering
the growth of most pest population is not continuous, the novel discrete pest population models with the
evolution of pest resistance to pesticide have been proposed and analyzed by Liang et al, who studied
the effects of complex dynamical behaviour of pest population on pesticide switching strategies [11].
The genetic resistance was ignored and they only considered the external induced resistance in all of
those studies.

An interesting question is how to describe impulsive control strategies implemented within each
generation when pests have non-overlapping generations, including impulsive release of natural ene-
mies and spraying of pesticides. In order to solve this problem, some interesting modeling methods
have been proposed recently. Tang et al. simplified hypothesis control strategy which is implemented
at the beginning or the end of each generation [19]. Wang et al. first proposed a single population
model with multiple impulsive pesticides applications within each generation, and then studied the ex-
istence and stability of the unique positive equilibrium [20]. Liang et al. proposed an analysis method
of extended discrete model based on continuous logistic model under impulse perturbation to model
the effects of single pesticide applications within each generation on populations growth [21].

Once the pest resistance to pesticide is genetic, the questions are how to model the external induced
resistance and genetic resistance in pest control model, and how to management the pest resistance
to pesticide to achieve the purpose of pest control to solve those problems, according to the genetic
laws and pesticide spraying, we modeled a pest resistance to pesticide model combine the external
induced resistance and genetic resistance. Then we introduce the pest resistance to pesticide model
into pest control models, the threshold conditions of pest eradication were discussed. For resistance
management, we discussed the pesticide switching strategy, and the optimal switching time was inves-
tigated under the control strategy of one times pest control within each pest generation and multiple
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pest control within each pest generation. Moreover, the effects of the death rate of susceptible pests, the
spraying times of pesticide within each generation, the dominance of resistance allele on the pesticide
switching generations were studied.

2. The evolution of pesticide resistance and pest control model

As described in the first part of the introduction, the development of pests’ resistance on pesticide
has a significant impact on pest control. To address those effects, we first investigate the evolution of
pests’ resistance, i.e.. we will analyze the development of pests’ resistance from the perspective of
gene inheritance and establish the development equation of pests’ resistance. Moreover, the evolution
of pests’ resistance has been combined into the pest growth model.

2.1. Simple genetic model with pesticide resistance

We assume that the pesticide resistance is determined by a single gene with two alleles R and S . R
denotes the resistance allele which represents the ability to survive on pesticide spraying. S denotes
the susceptibility allele which represents the ability to survive with no resistance to the pesticide. Ac-
cording to Mendelian genetic law, we divide the pest population into three different types: homozygote
resistant individuals RR, homozygote susceptibles S S and heterozygotes RS . In the presence of an ap-
plication of pesticide, we denote WRR, WRS , WS S are the fitness of RR type pest, the fitness of RS type
pest and the fitness of S S type pest, respectively. Note that the fitness of an individual is independent
of its genotype frequency [22], and we assume that pest individual is mated randomly. According to
the hardy-weinberg principle [23], if the frequence of resistance allele is pn and the frequence of sus-
ceptible allele is qn in generation n (with pn + qn = 1 ), then the genotype frequencies in pests after
selection are given by the following equations

RRn =
WRR p2

n

Wn

,RS n =
WRS 2pnqn

Wn

, S S n =
WS S q2

n

Wn

,

where Wn is the mean fitnesses with

Wn = p2
nWRR + 2pnqnWRS + q2

nWS S .

The averages fitnesses of the resistance allele R at generation n is

wn = pnWRR + qnWRS .

Consequently, the frequence of the resistance allele R in generation n + 1 becomes

pn+1 =
pnwn

Wn

=
pn (pnWRR + qnWRS )

Wn

.

Submitting qn = 1 − pn, we have the evolution of pesticide resistance

pn+1 =
p2

n(WRR −WRS ) + pnWRS

p2
n(WS S − 2WRS + WRR) + pn(2WRS − 2WS S ) + WS S

. (2.1)

Note that this genetic model has been widely used in different fields [14, 24–28].
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Table 1. Parameters and presentation used in construction of the model.

Parameters Presentation
d1 The mortality rate of susceptible pests
h Dominance of pesticide resistance allele
M Spray times within each generation
p0 Initial gene frequency
r The intrinsic growth rate
K The carrying capacity
x0 Initial population size of pests
T The period of pesticide applications

2.2. The effects of frequency of pesticide spraying on evolution of resistance

From Eq (2.1), it is obvious to see that pn depends on the relative values of WRR , WRS and WS S .
Now we focus on deriving equations that represent the fitness of the three different genotypes: RR, RS ,
and S S . We know that the death rate of pests strictly depends on the dosage of pesticide spraying.
For simplification, we assume that the same dosage of pesticide is sprayed at each control event, and
without loss of generality, we assume that one unit dose of pesticide is sprayed at each control event.
Naturally, the homozygote susceptibles S S are assumed to die with a higher death rate d1 (0 ≤ d1 ≤ 1)
when a single pest control is carried out with one unit dose of pesticide is sprayed (Note that the
different pesticides have different d1, for convenience, we use d1 as death rate in the whole study. For
the specific pesticide, we only need to give specific value of d1 in the following results). However, death
rate is reduced by the level of dominance of pesticide resistance allele h (0 ≤ h ≤ 1) in RS individuals,
thus, the death rate of heterozygous individuals is (1 − h)d1 after one unit of sprayed pesticide. And
the death rate of resistant individuals RR is d2, for simplicity, we assume that the death rate of resistant
individuals RR extremely low, that is d2 ≈ 0. Consequently, the fitness of each genotype after pesticide
is applied once within each generation is

WRR = W (1)
RR = 1,

WRS = W (1)
RS = 1 − (1 − h)d1,

WS S = W (1)
S S = 1 − d1.

In reality, farmers usually spray pesticides multiple times within each pest generation. In order to
investigate the evolution of pests’ resistance in this case, we assume that the pesticide is sprayed M
times (M ≥ 1) within each generation, and the fitness of each genotype after m−times pesticide spray-
ing in each generation is W (m)

RR , W (m)
RS , W (m)

S S , (m = 1, 2, ...M). We know that the fitness of homozygote
sensitives WS S is W (1)

S S = 1 − d1 for once pesticide spraying, W (2)
S S = (1 − d1)2 for 2−times pesticide

spraying, · · · , and the fitness of heterozygotes WRS is W (1)
RS = 1 − (1 − h)d1 for once pesticide spraying,

W (2)
RS = (1 − (1 − h)d1)2 for 2−times pesticide spraying· · · . Thus, the fitness of each genotype after

spraying pesticide m times within each generation can be expressed as

W (m)
RR = 1,
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W (m)
RS = (1 − (1 − h)d1)m,

W (m)
S S = (1 − d1)m.

Thus, the frequence of genotypes after m times pesticide spraying in the nth generation are given by
the following equations

S S n,m =
W (m)

S S q2
n

Wn,m

, RS n,m =
W (m)

RS 2pnqn

Wn,m

, RRn,m =
W (m)

RR p2
n

Wn,m

,

where Wn,m is the mean fitness of the pest population after m times pesticide spraying in the nth gener-
ation, which is given by

Wn,m = p2
nW (m)

RR + 2pnqnW (m)
RS + q2

nW (m)
S S .

And the averages fitnesses of the resistance allele R after m times pesticide spraying in the nth genera-
tion is

wn,m = pnW (m)
RR + qnW (m)

RS .

Thus, the frequency of the resistance allele R in pests from nth generation, to n + 1th generation is

pn+1 =
pnwn,M

Wn,M

=
p2

n(W(M)
RR −W(M)

RS )+pnW(M)
RS

p2
n(W(M)

S S −2W(M)
RS +W(M)

RR )+pn(2W(M)
RS −2W(M)

S S )+W(M)
S S
.

(2.2)

If the pesticide have completely kill rate to the homozygote sensitives (i.e., d1 = 1 and W (M)
S S = 0), then

pn+1 =
pn(1 −W (M)

RS ) + W (M)
RS

pn(1 − 2W (M)
RS ) + 2W (M)

RS

. (2.3)

Solving equation Eq (2.3) with initial gene frequency p0, we have

pn =
β(p0 − 1)

(
W (M)

RS

)n
− p0 + β

(p0 − 1)(W (M)
RS )n − p0 + β

, (2.4)

where β =
W(M)

RS

2W(M)
RS −W(M)

RR
.

In the next section, calculating the n is important to investigate the optimal generation for switching
pesticide. From Eq (2.4), we can get

n = logW(M)
RS

(p0−β)(pn−1)
(p0−1)(pn−β) . (2.5)

Now we consider the general case (i.e., W (M)
S S , 0). In order to obtain pn or n, we calculate the

amount of change in gene frequency per generation by using Haldance’ method [29], i.e..

4pn = pn+1 − pn

=
pn(1−pn)(pn(1−W(M)

RS )+(1−pn)(W(M)
RS −W(M)

S S ))

Wn,M
.

(2.6)
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We further assume that gene frequency is very low [30], its rate of change per generation could be
given by

dpn

dn
=

pn(1 − pn)
(
pn(1 −W (M)

RS ) + (1 − pn)(W (M)
RS −W (M)

S S )
)

Wn,M

. (2.7)

In order to calculate n, we divide it into three cases:
Case 1: R is completely dominant gene in RS , i.e., h = 1 [31].

Integrating Eq (2.7) with the initial condition p0, we have

n =

 1

1 −W (M)
S S

ln
 p0 − 1

pn − 1

(
pn

p0

)W(M)
S S

 +
pn − p0

(p0 − 1)(pn − 1)


 . (2.8)

Case 2: R is completely recessive gene in RS , i.e., h = 0 [31].
Integrating Eq (2.7) with the initial condition p0, we can get

n =

 1

1 −W (M)
S S

ln
 p0 − 1

pn − 1

(
pn

p0

)W(M)
S S

 +
W (M)

S S (pn − p0)
p0 pn


 . (2.9)

.
Case 3: R is incomplete dominant or incomplete recessive gene in RS , i.e., 0 < h < 1.

Integrating Eq (2.7) with the initial condition p0, we can get

n =

ln ( pn

p0

)D (
pn − 1
p0 − 1

)E (
Gn

G0

)F , (2.10)

where D =
W(M)

S S

W(M)
RS −W(M)

S S
, E = − 1

1−W(M)
RS

, F =
W(M)

RS
2
−W(M)

S S

(1−W(M)
RS )(W(M)

RS −W(M)
S S )

and Gn = (1 − 2W (M)
RS + W (M)

S S )pn + W (M)
RS −

W (M)
S S . [a] denotes the greatest integer no larger than a.
Next, we investigate the effects of death rate of pesticide for homozygote susceptibles (d1) and the

spraying times (M) on the frequence of resistance (pn). Because of the highly nonlinearity of Eq (2.10),
we only focus on the effects in case 1 and case 2 theoretically, and for case 3, we just carry out some
numerical simulations.

For case 1, i.e.. R is completely dominant gene in RS , differentiating Eq (2.8) with respect to d1 and
M respectively, we have

∂pn

∂d1
=

MnW (M−1)
S S + MW (M−1)

S S ln pn
p0

1
1−pn

+ W (M)
S S

1
pn

+ 1
(pn−1)2

> 0,

∂pn

∂M
=
−W (M)

S S n ln W (1)
S S −W (M)

S S ln W (1)
S S ln pn

p0

1
1−pn

+ W (M)
S S

1
pn

+ 1
(pn−1)2

> 0.

For case 2, i.e.. R is completely recessive gene in RS , differentiating Eq (2.9) with respect to d1 and
M respectively, we have

∂pn

∂d1
=

MnW (M−1)
S S + MW (M−1)

S S ln pn
p0

+ MW (M−1)
S S ( 1

p0
− 1

pn
)

1
1−pn

+ W (M)
S S

1
pn

+
W(M)

S S
p2

n

> 0,
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Figure 1. The effect of the mortality rate of susceptible pests d1 and spray times M on pn.
(a)–(b) R is completely recessive gene in RS , (c)–(d) R is completely dominant gene in RS ,
(e)–(f) R is incomplete dominant or incomplete recessive gene in RS and p0 = 0.0001.

∂pn

∂M
=
−W (M)

S S n ln W (1)
S S −W (M)

S S ln W (1)
S S ln pn

p0
−W (M)

S S ln W (1)
S S ln( 1

p0
− 1

pn
)

1
1−pn

+ W (M)
S S

1
pn

+
W(M)

S S
p2

n

> 0.

From the above formulas, we can see that pn is an increasing function with respect to d1 and M in both
case 1 and case 2. That is, decreasing the death rate of susceptible pests or decreasing the spraying
times of pesticide in each generation can decrease the values pn . In order to show in more detail how
the level of dominance of pesticide resistance allele h , the mortality rate d1 and M affect evolution
of pesticide resistance, we analyze those by numerically simulation in Figure 1. From Figure 1 (a)
and (c), we can see that the higher the efficiency of the pesticides (i.e. the higher mortality rate), the
faster the resistance development is. From Figure 1 (b) and (d), we can see that the more times of the
pesticide spraying in one generation, the faster the resistance development is.

If we fix the frequence of resistance, then we want to know how the death rate (d1), spraying times
(M) and the level of dominance of pesticide resistance (h) on generation (n) which reach to fixed
resistance level. For this purpose, we carry out the sensitivity analysis of n in Figure 2. In Figure 2,
we fix pn = 50%, and we can see that the higher the efficiency of the pesticides is (i.e., the higher
mortality rate), the faster of the pest population reaches the fixed resistance level; The more times of
the pesticide sprayed in one generation, the faster of the pest population reaches the fixed resistance
level; The higher the level of dominance of pesticide resistance, the faster of the pest population reaches
the fixed resistance level.
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Figure 2. The effect of the mortality rate d1 and spraying times M on n, with the variation of
h from 0 to 1 and p0 = 0.005.

2.3. Pest growth model with pesticide resistance

Throughout this study, the pest population is assumed to grow logistically within each generation
[n, n + 1] ,

dx(t)
dt

= rx(t)(1 −
x(t)
K

), n ≤ t ≤ n + 1, n = 0, 1, 2, ..., (2.11)

where x(t) is the density of the pest population at time t, r denotes the intrinsic growth rate and K
represents the carrying capacity.

In reality, people usually spray pesticide within a fairly short period, so it’s reasonable to assume
that the density of pests can be reduced instantaneously once the chemical control tactics are applied.
Therefore, the impulsive hybrid model based on Eq (2.11) can be employed to depict this control
measure.

If the pesticides is applied at time n + τm (0 ≤ τm ≤ 1) with an instantaneous killing rate Dn,m, then
we have 

dx(t)
dt = rx(t)(1 − x(t)

K ), t , n + τm,

x(n + τm)+ = (1 − Dn,m)x(n + τm), t = n + τm,

Dn,m = d1S S n,m + (1 − h)d1RS n,m.

(2.12)
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From the former section, we have

Dn,m = d1S S n,m + (1 − h)d1RS n,m

=
d1W(m)

S S q2
n+2(1−h)d1W(m)

RS pnqn

Wn,m

=
p2

na(m)+pnb(m)+c(m)

p2
na(m)

1 +pnb(m)
1 +c(m)

1
,

(2.13)

with
c(m) = d1W (m)

S S , b
(m) = 2(1 − h)d1W (m)

RS − 2c(m), a(m) = c(m) − 2(1 − h)d1W (m)
RS ,

and
c(m)

1 = W (m)
S S , b

(m)
1 = 2W (m)

RS − 2c(m)
1 , a(m)

1 = c(m)
1 − 2W (m)

RS + 1.

It is clear that the instantaneous killing rate Dn,m decreases as pesticide resistance develops.

3. Switching strategy for spraying once pesticide within each generation

In this section, we assume that once control is implemented within each pest generation. We then
investigate how to switch pesticides and manage the development of genetic resistance such that the
pest population can be eventually eliminated or maintained at a density below EIL. In order to in-
vestigate those questions, we propose two different switching strategies, and investigate the optimal
switching times under once control within each generation.

3.1. Switching pesticide with threshold condition of pest eradication as a guide

We assume that pesticide was used once within each generation at time n + τ1 (0 ≤ τ1 ≤ 1) in nth
generation. The model Eq (2.12) becomes

dx(t)
dt = rx(t)(1 − x(t)

K ), t , n + τ1,

x(n + τ1)+ = (1 − Dn))x(n + τ1), t = n + τ1,

Dn = d1S S n,1 + d1(1 − h)RS n,1,

(3.1)

where Dn = Dn,1. Solving Eq (3.1) within [n, n + 1], we have

x(t) =
Kxner(t−n)

k + xn(er(t−n) − 1)
, n ≤ t ≤ n + τ1,

x(t) =
Kx(n + τ1)+er(t−n−τ1)

K + x(n + τ1)+(er(t−n−τ1) − 1)
, n + τ1 ≤ t ≤ n + 1.

Thus, we have

x(n + τ1)+ =
Kxnerτ1(1 − Dn)
K + xn(erτ1 − 1)

and

x(n + 1) =
Ker(1 − Dn)x(n)

K + (erτ1 Dn + er(1 − Dn) − 1)x(n)
. (3.2)
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Denote x(n) = xn, then we have the following iteration equation from nth generation to n + 1th gener-
ation

xn+1 =
Ker(1 − Dn)xn

K + (erτ1 Dn + er(1 − Dn) − 1)xn
, (3.3)

which is a non-autonomous Beverton-Holt difference equation, i.e. the so-called extended Beverton-
Holt model. For more details of extended Beverton-Holt model, please see the references [32–37].

According to the properties of the extended Beverton-Holt model, we have that if er(1 − Dn) < 1,
then the zero solution of Eq (3.3) is globally asymptotically stable. Consequently, we can define the
threshold value Rn as

Rn = er(1 − Dn), (3.4)

where Dn can be calculated by Eq (2.13). Thus, the pest population will be eradicated if Rn < 1 for all
n = 0, 1, 2, · · · .

Note that Rn is dynamic and depends on Dn. We can see that Dn is a monotonic decreasing function
of n. Therefore, as the pest generations increases, the threshold value Rn increases and exceeds one,
resulting in pest resurgence and outbreaks.
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Figure 3. The effects of the level of dominance of pesticide resistance allele h and the
mortality rate d1 on the Rn. The other parameters are given as follows: r = 0.65, p0 = 0.0001;
(a): d1 = 0.7; (b): h = 0.65.

In Figure 3, we simulate the threshold Rn with different level of dominance of pesticide resistance
allele in RS (h) and the mortality rate (d1),which reveal that Rn is an increasing function with respect
to n, and will exceed 1 after several pesticide pesticide applications. From Figure 3 (a), we can see that
the greater of h is, the faster growth of Rn is. This is because that the higher of the level of dominance of
pesticide resistance allele in RS is, the faster development of the pests’ resistance is. All those confirm
that the pest population will be resurgence and outbreaks as the pesticide resistance evolution. From
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Figure 3 (b), it is obvious that the effects of mortality rates d1 on Rn are more complicated with the
development of time n. The bigger d1 is, the smaller Rn is, when n is small. And with the increase of
n, the effects of mortality rates d1 on Rn is changed, the bigger d1 is, the smaller Rn is. This is due to
that in the early stages of the pest control, the more dosage of pesticide is sprayed, the higher of the
mortality rate is, and the pest population is more easy to control with the high efficiency of pesticide.
With the increasing of n, the pest control times is increasing, and the pest’s resistance is developed,
which the results is the decline in efficiency of pesticide, and the pests’ outbreak.

In order to prevent pest population outbreaks and restrain the development of pesticide resistance,
farmers usually switch some different type pesticide. And what is the optimal switching time with the
aim of eradication of pest population. For this aim, we only need the threshold Rn below one for all
n = 0, 1, 2, · · · . Therefore, farmers need to switch the pesticide before the threshold value Rn goes to
one. Without loss of generality, we assume that the threshold value Rn will increase and exceed the
unit after n1th generation i.e

n1 = max{n : Rn ≤ 1},

and the optimal switching time is n1, or the maximum number of one type of pesticide spraying is
n1 + 1 (note that the first pesticide application is at time n = 0). That is, after n1 + 1 times pesticide
spraying, farmers should switching another type of pesticide.

In order to determine n1 analytically, we let Rn = 1 , then

1 − Dn = e−r,

n1 = [{n : 1 − Dn = e−r}].

From Eq (2.13) , we can get

1 − Dn =
p2

n(a(1)
1 − a(1)) + pn(b(1)

1 − b(1)) + c(1)
1 − c(1)

p2
na(1)

1 + pnb(1)
1 + c(1)

1

= e−r. (3.5)

That is
p2

n(a(1)
1 (1 − e−r) − a(1)) + pn(b(1)

1 (1 − e−r) − b(1)) + c(1)
1 (1 − e−r) − c(1) = 0. (3.6)

In order to solve Eq (3.6), we define the function f (x) as follows

f (x) = Ah,d1 x2 + Bh,d1 x + Cd1 , (0 ≤ x ≤ 1), (3.7)

where
Ah,d1 = a(1)

1 (1 − e−r) − a(1) = d1(−2h2d1 + h(2e−r − 4 + 4d1) + 2 − d1 − e−r),

Bh,d1 = b(1)
1 (1 − e−r) − b(1) = 2hd1(hd1 + (2 − 2d1 − e−r)),

and
Cd1 = c(1)

1 (1 − e−r) − c(1) = (1 − d1)(1 − d1 − e−r).

The Eq (3.6) becomes to f (pn) = 0. Now we solve this equation with respect to pn, and substituting
pn = pn1 into Eq (2.5) or Eqs (3.10)–(2.10), we can obtain the optimal switching time n1 under different
cases.
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The pn1 can be defined as follows:

pn1 =


−Bh,d1 +

√
B2

h,d1
−4Ah,d1Cd1

2Ah,d1
, i f Cd1 < 0 and Ah,d1 , 0,

−Cd1
Bh,d1

, i f Cd1 < 0 and Ah,d1 = 0,
−Bh,d1
Ah,d1

, i f Cd1 = 0, Bh,d1 < 0 and Ah,d1 > 0.

The detailed calculation of the pn1 is provided in Appendix A.
Now we turn our attention to the effect of the timing of pesticide applications τ1 on the density of

pest population xn. From Eq (3.3) we have the following iteration equation

xn =
KNnx0

K + S nx0
, (3.8)

where

Nn = enr
n−1∏
j=0

(1 − D j)

and

S n =

 erτ1 D0 + Nn − 1, n = 1,
erτ1 D0 +

∑n−1
i=1

(
er(i+τ1)Di

∏i−1
j=0(1 − D j)

)
+ Nn − 1, n > 1.
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Figure 4. The effects of the time factor τ1 on the density of xn predicated by Eq (3.3) for
τ1 = 0.1, τ1 = 0.5, τ1 = 0.9, respectively. The parameter values are fixed as follows:
r = 0.65, η = 80, x0 = 20, d1 = 0.55, h = 0.65, p(1) = 0.0001, EIL = 35.

It’s easy to see that xn is a decreasing function with respect to τ1, this means that the later of pest
control is, the smaller of pest population density is, and more benefit to pest control. In Figure 4, we
simulate the development of xn with respect to n under different τ1. From Figure 4, we can see that
the later insecticide spraying time is, the smaller the population density is, and we also see that the
density of pest population xn is decreasing at the beginning of pest control, and then the density of pest
population xn is increasing after some pesticide applications. The reason is that with the increasing of
number of pesticide sprayings, the pesticide resistance is developed, and consequently, the density of
pest population can not decrease any more, instead, it increases rapidly, even exceeds the EIL.
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3.2. Switching pesticide with EIL as a guide

As mentioned in the introduction, the pre-set goal of the pest management is to control the density
of the pest below the EIL. However, the pest population will exceed the EIL eventually if only one
type of pesticide is used (i.e. do not switch pesticides), see Figure 4. Thus, in order to successfully
control the density of pest population below the EIL, farmers should switch another kind of pesticide
before the density of pest population reach to EIL. In this subsection, we will investigate the optimal
switching time with EIL as switching guide.

In there, we assume that the pest population density exceeds EIL for the first time in the n2 + 1th
generation.This indicates that xn2 ≤ EIL and xn2+1 > EIL, that is the optimal switching generation is
n2 + 1.

From Eq (3.3), we have

xn2+1 =
Ker(1 − Dn2)xn2

K + (erτ1 Dn2 + er(1 − Dn2) − 1)xn2

> EIL, (3.9)

and we can get (
Ker(1 − Dn2) − EIL(erτ1 Dn2 + er(1 − Dn2) − 1)

)
xn2 > KEIL. (3.10)

It follows from xn2 ≤ EIL that

Ker(1 − Dn2) − EIL(erτ1 Dn2 + er(1 − Dn2) − 1) > K,

then
Dn2 < E1,

where E1 =
(er−1)(K−EIL)

er(K−EIL)+EILerτ1 . It is easy to see that E1 is decreasing as τ1 → 1. This implies that n2 is
increasing as τ1 → 1, in other words, under the EIL guided switching strategy, the number of the same
pesticide used increases with the increasing of τ1.

Substituting Eq (3.8) into Eq (3.10), we have

(
Ker(1 − Dn2) − EIL(erτ1 Dn2 + er(1 − Dn2) − 1)

) KNn2 x0

K + S n2 x0
> KEIL,

thus
Zn2 >

EILK + x0EILD0erτ1 − EILx0

x0
, (3.11)

where Zn2 = (K − EIL)Nn2+1 − EIL
∑n2

i=1

(
er(i+τ1)Di

∏i−1
j=0(1 − D j)

)
.

Therefore,

n2 =

[{
l
∣∣∣∣∣Zl =

EILK + x0EILD0erτ1 − EILx0

x0

}]
. (3.12)

In order to understand these two different switching strategies more intuitively, we draw some nu-
merical simulations in the Figure 5. From Figure 5 (a) we can see that under the Rn guided switch-
ing strategy the pest population will be eradicated completely after several pesticide switches, where
n1 = 3. That is after four pesticide applications of one kind of pesticide (note that the first pesticide
application is at time n = 0), the farmers must switch to another kind of pesticide to eradicate the pest
quickly. From Figure 5 (b) we can see that under the EIL guided switching strategy pest control will
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tends to periodic control after a certain number of pesticide switches. This is due to the development of
resistance of pest on the same type pesticide, the density of pest population will exceed EIL after some
numbers of the same type pesticide spraying, under the EIL guided switching strategy pest control,
farmers should switching another type of pesticide at the last number of pesticide spraying before the
density of pest population reach to EIL (we assume that the pest population has the same development
of pesticide resistance on different type of pesticide), due to the same process of pesticide resistant
evolution and pest control period, the pest control will tends to periodic control under this switching
strategy.

0 2 4 6 8 10 12 14 16 18 20

n

0

5

10

15

20

x n

(a)

0 10 20 30 40 50 60 70 80 90 100

n

0

10

20

30

x n

(b)

Figure 5. Illustrations of two different switching strategies.The parameter values are fixed
as follows:r = 0.6, K = 50, x0 = 20, τ1 = 0.9, d1 = 0.65, h = 0.65, p0 = 0.005, EIL = 35.
(a) Numerical simulations of Eq (3.3) with several pesticides switches guided by threshold
condition; (b) Numerical simulations of Eq (3.3) with several pesticides switches guided by
the EIL.

4. Multiple control actions applied within each generation

In reality, the pesticide is sprayed for multiple times in each generation to control pest. Therefore,
in this section, we developed an extended discrete single population model with multiple impulsive
chemical control within each generation, and then investigate the optimal generation for switching
pesticides.

4.1. Switching pesticide with threshold condition as a guide

We assume that the pesticides are applied M times within each generation, that is to see, there exist
τm(m = 1, 2 · · · ,M) with n ≤ n + τ1 ≤ n + τ2 ≤ · · · ≤ n + τM ≤ n + 1, such that the pesticides have been
applied at n + τm with a proportion Dn,m of the pest being killed. We have

dx(t)
dt = rx(t)(1 − x(t)

K ) t , n + τm,

x(n + τm)+ = (1 − Dn,m)x(n + τm) t = n + τm,

Dn,m = d1S S n,m + (1 − h)d1RS n,m.

(4.1)
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For convenience, we denote Dn,0 = 0 . Therefore, by employing the same methods proposed before,
we have the following extended discrete single population model with multiple impulsive chemical
control within each generation

xn+1 =
erK

∏M
m=1(1 − Dn,m)xn

K +
(∑M

m=1(erτm Dn,m
∏m

i=1(1 − Dn,i−1)) + er
∏M

m=1(1 − Dn,m) − 1
)

xn

. (4.2)

In particular, if M = 1 then we have
∑M

m=1(erτm Dn,m
∏m

j=1(1 − Dn, j−1)) = erτ1 Dn .
For simplicity, we assume that the pesticides are sprayed periodically within each generation, which

satisfies τm+1 − τm = T for m=1,2...,M and 0 < T ≤ 1−τ1
M−1 , thus we can get

xn+1 =
Kλnxn

K + (µn + λn − 1) xn
, (4.3)

with λn = er ∏M
m=1(1 − Dn,m) and µn =

∑M
m=1(er(τ1+(m−1)T )Dn,m

∏m
i=1(1 − Dn,i−1)). Note that this is the

extended Beverton-Holt model, and if er ∏M
m=1(1 − Dn,m) < 1, the population size is gradually reduced

and becomes extinct eventually. We can define the dynamic threshold value RM
n as follows:

RM
n = er

M∏
m=1

(1 − Dn,m),

that is, if RM
n < 1, the population size is gradually reduced and becomes extinct eventually.

In order to analyse the effects of the spraying times M of pesticides in each generation on the
threshold value RM

n , we simulate the threshold value RM
n with different spraying times M in Figure 6.

From Figure 6, we can see that RM
n is a decreasing function with respect to M, that is, the more spraying

times in each generation is, the later of the density of pest population reaching to RM
n is.
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Figure 6. The effects of the spraying M of pesticide in each generation on the threshold value
RM

n . The parameters value are fixed as follows: r = 0.4, d1 = 0.6, h = 0.75, p0 = 0.0001.
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From Figure 6, we can also see that the density of pest population will reach to the threshold after
several times of spraying pesticide, due to the development of pesticide resistance. Therefore, in order
to eradicate pest population, the alternative choice is to switch another pesticide after the using of one
pesticide for several times. In the following, we will discuss the optimal switching time.

Note that, in order to eradicate the pests population, the threshold value RM
n should below one for all

n = 0, 1, 2, · · · . Therefore, it’s necessary to switch the pesticides before the threshold value RM
n reach

to one. Here, we assume that the threshold value reach or exceed to 1 firstly after pest control in n3th
generation, i.e..

n3 = max{n : RM
n ≤ 1},

and the optimal generation for switching pesticides is n3. In order to determine n3 analytically, we let
RM

n = 1, that is

RM
n = er

M∏
m=1

(1 − Dn,m) = 1, (4.4)

or

n3 = [{n :
M∏

m=1

(1 − Dn,m) = e−r}].

From Eq (2.13) , we have

1 − Dn,m = 1 − p2
na(m)+pnb(m)+c(m)

p2
na(m)

1 +pnb(m)
1 +c(m)

1

=
p2

na(m+1)
1 +pnb(m+1)

1 +c(m+1)
1

p2
na(m)

1 +pnb(m)
1 +c(m)

1
,

submitting the former Eq (4.4), we get

M∏
m=1

(1 − Dn,m) =
p2

na(M+1)
1 + pnb(M+1)

1 + c(M+1)
1

p2
na(1)

1 + pnb(1)
1 + c(1)

1

= e−r. (4.5)

Letting
g(x) = AM

h,d1
x2 + BM

h,d1
x + CM

d1
, (4.6)

with

AM
h,d1

= a(M+1)
1 − e−ra(1)

1
= (1 − d1)M+1 − 2(1 − (1 − h)d1)M+1 + 1 − e−rd1(1 − 2h),

BM
h,d1

= b(M+1)
1 − e−rb(1)

1
= 2(1 − (1 − h)d1)M+1 − 2(1 − d1)M+1 − e−r2d1h
= 2hd1((M + 1)(1 − d1)M − e−r) +

∑M+1
i=2

(
2(hd1)iCi

M+1(1 − d1)M+1−i
)
,

where Ci
M+1 =

(M+1)!
i!(M+1−i)! is combinatorial number, and

CM
d1

= c(M+1)
1 − e−rc(1)

1
= (1 − d1)((1 − d1)M − e−r).
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Then Eq (4.5) becomes g(pn) = 0. Solving g(pn) = 0 with respect to pn we can obtain pn3 , with

pn3 =



−BM
h,d1

+

√
BM

h,d1

2
−4AM

h,d1
CM

d1
2AM

h,d1

, i f CM
d1
< 0 and AM

h,d1
, 0,

−CM
d1

BM
h,d1

, i f CM
d1
< 0 and AM

h,d1
= 0,

−BM
h,d1

AM
h,d1

, i f CM
d1

= 0, BM
h,d1

< 0 and AM
h,d1

> 0

The detailed calculation of the pn3 is provided in Appendix B. We substitute pn3 into Eq (2.5)
or Eqs (3.10)–(2.10), and we can obtain the optimal switching time n3 under different cases.

In the following, we address how the xn varies as the parameters τ1 and T change, which are quite
important for pesticide applications. Firstly, by induction, we can get the recursion formula for xn

of Eq (4.3) as follows:

xn =
KNM

n x0

K + S M
n x0

, (4.7)

where

NM
n = ern

n−1∏
j=0

M∏
m=1

(1 − D j,m),

S M
n =


∑M

m=1

(
er(τ1+(m−1)T )D0,m

∏m−1
l=0 (1 − D0,l)

)
+ NM

n − 1, n = 1,∑M
m=1

(
er(τ1+(m−1)T )D0,m

∏m−1
l=0 (1 − D0,l)

)
+ δn + NM

n − 1, n > 1,

with

δn =

n−1∑
i=1

 M∑
m=1

er(i+τ1+(m−1)T )Di,m(
m−1∏
j=0

(1 − Di, j))(
i−1∏
k=0

M∏
m=1

(1 − Dk,m))


 .

From Eq (4.7) we can see that xn is a decreasing function with respect to τ1 and T , which means that
the longer of period or the later of pesticide spraying is, the more benefit to pest control.

4.2. Switching pesticide with EIL as a guide

In this subsection, we focus on the control tactics of EIL. That is farmers should control pest when
the density of pest population reach to EIL. As the former states, because of the resistance of pesticide,
spraying one type of pesticide could not maintain the density of pest population below the EIL. Thus
after some times of one type of pesticide spraying, farmers should switch another type of pesticides.

We assume that after the n4th generation, farmers should switch another type of pesticide, which
means that xn4 ≤ EIL and xn4+1 > EIL, that is, the optimal switching generation is n4 + 1. In order to
find the n4, we let xn4+1 > EIL. From Eq (4.3), we have

xn4+1 =
Kλn4 xn4

K +
(
µn4 + λn4 − 1

)
xn4

> EIL, (4.8)

then we can get
(λn4 K − (µn4 + λn4 − 1)EIL)xn4 > EILK. (4.9)

Due to xn4 ≤ EIL, from Eq (4.9), we can get

λn4 K − (µn4 + λn4 − 1)EIL > K. (4.10)
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From Eq (2.13), we can get

λn4 = er
M∏

m=1

(1 − Dn4,m) =
er(p2

n4
a(M+1)

1 + pn4b
(M+1)
1 + c(M+1)

1 )

p2
n4

a(1)
1 + pn4b

(1)
1 + c(1)

1

,

and µn4 can be calculated as follows

µn4 =

M∑
m=1

(er(τ1+(m−1)T )Dn4,m

m∏
i=1

(1 − Dn4,i−1)) =
p2

n4
(θ1 − 2θ2) + pn4(2θ2 − 2θ1) + θ1

p2
n4

a(1)
1 + pn4b

(1)
1 + c(1)

1

,

with

θ1 = d1

M∑
m=1

er(τ1+(m−1)T )W (m)
S S =

erτ1W (1)
S S d1(1 − erT MW (M)

S S )

1 − erT W (1)
S S

,

θ2 = d1(1 − h)
M∑

m=1

er(τ1+(m−1)T )W (m)
RS =

erτ1W (1)
RS (1 − h)d1(1 − erT MW (M)

RS )

1 − erT W (1)
RS

,

thus Eq (4.10) can be rewritten as follows

p2
n4

H1 + pn4 H2 + H3

p2
n4

a(1)
1 + pn4b

(1)
1 + c(1)

1

> K − EIL, (4.11)

where
H1 = a(M+1)

1 er(K − EIL) − (θ1 − 2θ2)EIL,

H2 = b(M+1)
1 er(K − EIL) − (2θ2 − 2θ1)EIL,

H3 = c(M+1)
1 er(K − EIL) − θ1EIL.

This indicates that pn4 should be satisfied

pn4(Â
M
h,d1

pn4 + B̂M
h,d1

) > ĈM
d1
, (4.12)

where ÂM
h,d1

= H1 − (K − EIL)a(1)
1 ,B̂M

h,d1
= H2 − (K − EIL)b(1)

1 and ĈM
d1

= (K − EIL)c(1)
1 − H3.

Substituting Eq (4.7) into Eq (4.9) gives

Yn4 >
EILK + x0EIL

∑M
m=1

(
er(τ1+(m−1)T )D0,m

∏m−1
l=0 (1 − D0,l)

)
− x0EIL

x0
,

with Yn4 = (K − EIL)NM
n4+1 − EILδn4+1. Thus,we have

n4 =


l

∣∣∣∣∣Yl =
EILK + x0EIL

∑M
m=1

(
er(τ1+(m−1)T )D0,m

∏m−1
l=0 (1 − D0,l)

)
− x0EIL

x0


 . (4.13)
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5. Conclusions

There are many factors to cause the resistance of pest to pesticide. The main factors are the external
factor (i.e. the high frequency and large doses spraying of pesticides) and the genetic factors. Con-
sider the above two factors, we set up the evolution equations of pesticide resistance under one times
spraying pesticide in one generation or multiple spraying pesticide in one generation, and introduce
the equation into pest control models.

Due to the development of pesticide resistance, the long-term use of the same kind of pesticides
to control pests, farmers cannot reach the aim of pest control, however, the pest population should be
outbreak again. In order to control pest population, farmers usually need to switch pesticides in some
kind of pesticides. In this work, we study the threshold condition to eradicate pest population under
one times spraying pesticide in one generation, analyze the relationship of the threshold condition and
evolution of pesticide resistance. Moreover, we get the maximum number of one type of pesticide
sprayings, and optimal switching time of pesticide. In the aim of controlling pest population below
the EIL, we also analyze the optimal switching time of pesticide under the case of one times spraying
pesticide in one generation. Farmers usually control pest population many times in one generation,
under this case, we research the optimal switching time of pesticide with the aim of eradicating pest
population and controlling pest population below the EIL, respectively.

6. Discussions

In this study, by assuming that the pest resistance to pesticide is determined by a single gene with
two alleles R and S and according to the genetic laws, we developed a novel model for pest resistance
to pesticide with external induced resistance and genetic resistance describing the dynamics of the
development of the pesticide resistance. With this model, we investigated the impact of the death rate
of susceptible pests and the spraying times of pesticide in each generation on the frequency of the
resistance allele. We showed that when R is completely recessive gene or completely dominant gene,
decreasing the death rate of susceptible pests and the spraying times of pesticide in each generation
can help to decrease the frequency of the resistance allele.

In practice, pest control, including spraying pesticide and releasing the natural enemies are usually
implemented impulsively. Therefore, many mathematical models with impulsive chemical control by
spraying the pesticide and natural enemies have been proposed and deeply studied [38–45]. In the-
ses studies, they usually assumed that the chemical and biological control were implemented at the
beginning at the end of one generation . However, pests usually have non-overlapping generations,
which indicates that control methods should be taken within each generation. In this study, we in-
corporate the impulsive control within each generation into a discrete population model. Through the
analytical methods , we then drived a novel model based on the continuous Logistic model with both
single pesticide applications and the evolution of pest resistance to pesticide. Based on these models,
we investigated the effects of the timing of pesticide application on the density of pest population by
calculating iteration equation. Our theoretical analyses reveal that the later the pesticide was spray-
ing , the smaller the density of the pests is. Further, we extended a discrete pest population growth
model by including both the multiple instantaneous pesticide applications within each generation and
the evolution of pest resistance to pesticide. Finally, we provided a threshold condition for pest eradi-
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cation, and based on the threshold condition we discussed the optimal generation when different types
of pesticides were used with a switching regime. With the aim of controlling the density of the pest
population below EIL, we provided a switching strategy guided by EIL, where the optimal generation
for switching another pesticides was investigated.

Note that, biological control by releasing the natural enemies, as an important component of the
IPM, helps to decrease the pest and slow down the development of the pesticide resistance. It remains
challenging how to combine the biological to chemical control aiming at fighting against the develop-
ment of pesticide resistance, and what the optimal releasing rate of the natural enemies should be. This
was left for our future works.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFCs 11871319,
11631012).

References

1. M. L. Flint, Integrated Pest Management for Walnuts, 2nd edition, University of California,
Oakland, CA, publication 3270, 1987.

2. J. C. Van, J. Woets, Biological and integrated pest control in greenhouses, Ann. Rev. Entomol.,
33 (1988), 239–250.

3. J. C. Van, Integrated pest management in protected crops, Integr. pest manage.: Prin. Syst. Dev.,
17 (1995), 311–320.

4. J. C. Van, Success in biological control of arthropods by augmentation of natural enemies, Biol.
Control: Mea. Success, (2000), 77–89.

5. G. P. Georghiou, Pest Resistance to Pesticides, Springer Science, 2012.

6. T. M. Ha, A Review on the development of integrated pest management and its integration in
modern agriculture, Asian J. Agric. Food. Sci., 2 (2014), 336–340.

7. M. J. Kotchen, Incorporating resistance in pesticide management: A dynamic regional approach,
N. Y.: Springer Verlag, (1999), 126–135.

8. M. B. Thomas, Ecological approaches and the development of ’truly integrated’ pest manage-
ment, Proc. Nat. Acad. Sci., 96 (1999), 5944–5951.

9. Y. Dumont, J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikun-
gunya disease and Aedes albopictus, J. Math. Biol., 65 (2012), 809–854.

10. J. H. Liang, S. Y. Tang, J. J. Nieto, R. A. Cheke, Analytical methods for detecting pesticide
switches with evolution of pesticide resistance, Math. Biosci., 245 (2013), 249–257.

11. J. H. Liang, S. Y. Tang, R. A. Cheke, Beverton-Holt discrete pest management models with
pulsed chemical control and evolution of pesticide resistance, Commun. Nonlinear Sci. Numer.
Simulat., 36 (2016), 327–341.

12. R. Nauen, Insecticide resistance in disease vectors of public health importance, Pest Manage.
Sci., 63 (2007), 628–633.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 471–494.



491

13. S. Barbosa, I. M. Hastings, The importance of modelling the spread of insecticide resistance in a
heterogeneous environment: The example of adding synergists to bed nets, Malar. J., 11 (2012),
1–12.

14. P. L. Birget, J. C. Koella, A genetic model of the effects of insecticide-treated bed nets on the
evolution of insecticide-resistance, Evol. Med. Public Health, 2015 (2015), 205–215.

15. R. Busi, S. B. Powles, H. J. Beckie, M. Renton, Rotations and mixtures of soil-applied herbicides
delay resistance, Pest Manage. Sci., 76 (2020), 487–496.

16. L. V. V. Arevalo, R. A. K. Carrillo, S. E. D. Aleman, Simple models for biological control of
crop pests and their application, Math. Methods Appl. Sci., 43 (2020), 8006–8014.

17. L. Guo, M. A. Muminov, G. Wu, X. Liang, C. Li, J. Meng, Large reductions in pesticides
made possible by use of an insect-trapping lamp: A case study in a winter wheat-summer maize
rotation system, Pest Manage. Sci., 74 (2018), 1728–1735.

18. R. M. May, A. P. Dobson, Population dynamics and the rate of evolution of pesticide resistance,
Pestic. Resist.: Strategies Tactics Manage., (1986), 170–193.

19. S. Y. Tang, Y. N. Xiao, R. A. Cheke, Multiple attractors of host-parasitoid models with inte-
grated pest management strategies: Eradication, persistence and outbreak, Theor. Popul. Biol.,
73 (2008), 181–197.

20. X. Wang, Z. H. Xu, S. Y. Tang, R. A. Cheke, Cumulative effects of incorrect use of pesticides
can lead to catastrophic outbreaks of pests, Chaos Solitons Fractals, 100 (2017), 7–19.

21. J. H. Liang, Y. H. Zhu, C. C. Xiang, S. Y. Tang, Travelling waves and paradoxical effects in a
discrete-time growth-dispersal model, Appl. Math. Modell., 59 (2018), 132–146.

22. C. Miller, A. Munoz, F. Pena, R. Rael, A. A. Yakubu, To Bt or Not to Bt balancing spatial genetic
heterogeneity to control the evolution of ostrinia nubilalis, Biom. Tech. Rep., (2001).

23. A. Hastings, Population Biology: Concepts and Models, New York: Springer, 1997.

24. M. Nei, Modification of linkage intensity by natural selection, Genetics, 57 (1967), 625–641.

25. S. Barbosa, I. M. Hastings , The importance of modelling the spread of insecticide resistance in a
heterogeneous environment: The example of adding synergists to bed nets, Malar. J., 11 (2012),
258–258.

26. A. South, I. M. Hastings, Insecticide resistance evolution with mixtures and sequences: A
model-based explanation, Malar. J., 17 (2018), 1–20.

27. D. J. Guillaume, J. W. Michael, When mother knows best: A population genetic model of
transgenerational versus intragenerational plasticity, J. Evol. Biol., 33 (2020), 127–137.

28. S. He, X. H. Zhang, J. H. Liang, S. Y. Tang, Multiscale modelling the effects of CI genetic
evolution in mosquito population on the control of dengue fever, Sci. Rep., 7 (2018), 13895–
13895.

29. J. B. Haldane, S. D.Jayakar, The solution of some equations occurring in population genetics, J.
Genet., 58 (1963), 291–317.

30. R. Nielsen, M. Slatkin, An Introduction to Population Genetics: Theory and Applications, New
York, 1970.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 471–494.



492

31. M. Nei, Molecular Population Genetics and Evolution, Texas University, Houston, USA. 1975.

32. R. J. Beverton, S. J. Holt, The theory of fishing, Sea Fish., (1956), 372–441.

33. H. Cymra, J. S. Robert, Attenuation in the almost periodic Beverton-Holt equation, J. Differ.
Equations Appl., 24 (2019), 542–547.

34. L. Berezansky, E. Braverman, On impulsive Beverton-Holt difference equations and their appli-
cations, J. Differ. Equations Appl., 10 (2004), 851–868.

35. V. L. Kocic, Global behaviour of solutions of a nonautonomous delay logistic difference equation,
J. Differ. Equations Appl., 17 (2004), 487–504.

36. V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Differ. Equations Appl., 11
(2005), 415–422.

37. S. Y. Tang, R. A. Cheke, Y. N. Xiao, Optimal impulsive harvesting on non-autonomous Beverton-
Holt difference equations, Nonlinear Anal., 65 (2006), 2311–2341.

38. Jiao, S. Cai, L. Chen, Analysis of a stage-structured predator-prey system with birth pulse
and impulsive harvesting at different moments, Nonlinear Anal.: Real World Appl., 12 (2011),
2232–2244.

39. Y. S. Tan, J. H. Liang, S. Y. Tang, The dynamical behavior of non-smooth system with impulsive
control strategies, Int. J. Biomath., 5 (2012), 1260018.

40. J. H. Liang, S. Y. Tang , Optimal dosage and economic threshold of multiple pesticide applica-
tions for pest control, Math. Comput. Model., 51 (2010), 487–503.

41. J. H. Liang, S. Y. Tang, R. A. Cheke, J. Wu, Adaptive release of natural enemies in a pest-natural
enemy system with pesticide resistance, Bull. Math. Biol., 75 (2013), 2167–2195.

42. J. H. Liang, S. Y. Tang, R. A. Cheke, J. Wu, Models for determining how many natural enemies to
release inoculatively in combinations of biological and chemical control with pesticide resistance,
J. Math. Anal. Appl., 422 (2015), 1479–1503.

43. J. H. Liang, S. Y. Tang, R. A. Cheke, An integrated pest management model with delayed
responses to pesticide applications and its threshold dynamics, Nonlinear Anal.: Real World
Appl., 13 (2012), 2352–2374.

44. P. P. Wang, W. J. Qin, G. Y. TAng, Modelling and Analysis of a Host-Parasitoid Impulsive
Ecosystem under Resource Limitation, Complexity, 2019 (2019), 1–12.

45. Y. Tian, S. Y. Tang, R. A. Cheke, Dynamic complexity of a predator-prey model for IPM with
nonlinear impulsive control incorporating a regulatory factor for predator releases, Math. Modell.
Anal., 24 (2019), 134–154.

Appendix A calculating the pn1

Note that,

f (1) = Ah,d1 + Bh,d1 + Cd1 = (a(1)
1 + b(1)

1 + c(1)
1 )(1 − e−r) − (a(1) + b(1) + c(1)) = 1 − e−r > 0,

due to a(1)
1 + b(1)

1 + c(1)
1 = 1 and a(1) + b(1) + c(1) = 0.
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In order to solve equation f (pn) = 0, we analyze the equation f (x) = 0 from the following cases:
Case (A1): Cd1 > 0 (i.e. 0 < d1 < 1 − e−r).
In this case, we can easy to see that f (0) > 0.
If Ah,d1 > 0, then f (x) > 0 for all 0 ≤ x ≤ 1.
If Ah,d1 ≤ 0, we can easily see that Bh,d1 > 0 (due to Cd1 > 0), then f (x) > 0 for all 0 ≤ x ≤ 1.
thus, f (pn) > 0 (0 < pn ≤ 1).
Case (A2): Cd1 < 0 and Ah,d1 , 0.
For this case, f (0) = Cd1 < 0 (i.e 1 − e−r < d1 < 1 ), the equation f (pn) = 0 has solution

pn1 =
−Bh,d1 +

√
B2

h,d1
−4Ah,d1Cd1

2Ah,d1

Case (A3): Cd1 < 0 and Ah,d1 = 0.
For this case, the equation f (x) = 0 turns to f (x) = Bh,d1 x + Cd1 = 0. Due to f (1) > 0 and f (0) < 0,

then the equation f (pn) = 0 has solution pn1 =
−Cd1
Bh,d1

.
Case (A4): Cd1 = 0 (i.e. d1 = 1 or d1 = 1 − e−r).
If d1 = 1, then

Ah,d1 = 2h(e−r − h) + 1 − e−r,

Bh,d1 = 2h(h − e−r).

If h ≥ e−r, then Bh,d1 ≥ 0, we can easy to see that f (pn) > 0 for all 0 < pn ≤ 1; If h < e−r, then Bh,d1 < 0
and Ah,d1 > 0, then then the equation f (pn) = 0 has solution pn1 =

−Bh,d1
Ah,d1

.
If d1 = 1 − e−r, then

Bh,d1 = 2h(1 − e−r)(h(1 − e−r) + e−r) > 0,

for this case, we can easy to see that f (pn) > 0 for all 0 < pn ≤ 1.

Appendix B calculating the pn3

Note that,

g(1) = AM
h,d1

+ BM
h,d1

+ CM
d1

= (a(M+1)
1 + b(M+1)

1 + c(M+)
1 ) − (a(1)

1 + b(1)
1 + c(1)

1 )e−r = 1 − e−r > 0,

due to a(M+1)
1 + b(M+1)

1 + c(M+)
1 = a(1)

1 + b(1)
1 + c(1)

1 = 1.
Using the same methods as in the proof of Appendix A, we analyze the equation g(x) = 0 from the

following cases:
Case (B1): CM

d1
> 0 (i.e. 0 < d1 < 1 − e

−r
M ).

In this case, we can easy to see that BM
h,d1

> 0 due to (M+1)(1−d1)M−e−r > 0 for all 0 < d1 < 1−e
−r
M

and
∑M+1

i=2

(
2(hd1)iCi

M+1(1 − d1)M+1−i
)
> 0. Thus, g(x) > 0 (0 ≤ x ≤ 1) for all 0 < d1 < 1 − e

−r
M .

Case (B2): CM
d1
< 0 and AM

h,d1
, 0.

For this case, g(0) = CM
d1
< 0 (i.e 1 − e

−r
M < d1 < 1 ), the equation g(x) = 0 has solution pn3 =

−BM
h,d1

+

√
BM

h,d1

2
−4AM

h,d1
CM

d1
2AM

h,d1

.

Case (B3): CM
d1
< 0 and AM

h,d1
= 0.

For this case, the equation g(x) = 0 turns to g(x) = BM
h,d1

x + CM
d1

= 0. Due to g(1) > 0 and g(0) < 0,

then the equation g(pn) = 0 has solution pn3 =
−CM

d1
BM

h,d1

.
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Case (B4): CM
d1

= 0 (i.e. d1 = 1 or d1 = 1 − e
−r
M ).

In this case, if d1 = 1, then AM
h,1 = −2hM+1 + 2he−r + 1 − e−r and BM

h,1 = 2h(hM − e−r). It is easy to
know that AM

h,1 + BM
h,1 > 0. If h ≥ e

−r
M , then BM

h,1 ≥ 0, we can easily know that g(x) > 0; If h < e
−r
M , then

BM
h,1 < 0 and AM

h,1 > 0, thus, we have g(pn3) = 0 with pn3 =
−BM

h,d1
AM

h,d1

.

If d1 = 1 − e
−r
M , then

BM
h,1−e

−r
M

= 2hMe−r(1 − e
−r
M ) +

M+1∑
i=2

(
2(h(1 − e

−r
M ))iCi

M+1e
−r(M+1−i)

M
)
> 0,

for this case, we can easy to see that g(pn) > 0 for all 0 < pn ≤ 1.
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