
Mathematical Biosciences and Engineering, 2020, 17(4): 39723997. doi: 10.3934/mbe.2020220.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A biological mathematical model of vectorhost disease with saturated treatment function and optimal control strategies
1 Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 Department of Mathematics, Abdul Wali Khan University, Mardan, 23200, Pakistan
4 Department of Mathematics, University of Hafr AlBatin, Hafr AlBatin 31991, Saudi Arabia
5 Department of Mathematics, Faculty of Science King Abdulaziz University, P. O. Box 80203 Jeddah 21589, Saudi Arabia
Received: , Accepted: , Published:
Special Issues: Recent Progress in Structured Population Dynamics
Keywords: optimal control applications; vectorhost model; saturated treatment; basic reproduction number; global stability; numerical simulations
Citation: Muhammad Altaf Khan, Navid Iqbal, Yasir Khan, Ebraheem Alzahrani. A biological mathematical model of vectorhost disease with saturated treatment function and optimal control strategies. Mathematical Biosciences and Engineering, 2020, 17(4): 39723997. doi: 10.3934/mbe.2020220
References:
 1. http://www.who.int/mediacentre/factsheets/fs387/en/
 2. N. Surapol, T. Korkiatsakul, I. M. Tang, Dynamical model for determining human susceptibility to dengue fever, Am. J. Appl. Sci., 8 (2011), 1101.
 3. M. Rafiq, M. O. Ahmad, Numerical modeling of dengue disease with incubation period of virus, Pak. J. Eng. Appl. Sci., (2016).
 4. R. Rebeca, L. M. Harrison, R. A. Salas, D. Tovar,A. Nisalak, C. Ramos, et al., Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas, Virology, 230 (1997), 244251.
 5. R. Ronald, The prevention of malaria, (2012).
 6. W. HuiMing, X. Z. Li, M. Martcheva, An epidemic model of a vectorborne disease with direct transmission and time delay, J. Math. Anal. Appl., 342 (2008), 895908.
 7. F. Zhilan, J. X. VelascoHernndez, Competitive exclusion in a vectorhost model for the dengue fever, J. Math. Biol., 35 (1997), 523544.
 8. Q. Zhipeng, Dynamical behavior of a vectorhost epidemic model with demographic structure, Comput. Math. Appl., 56 (2008), 31183129.
 9. W. Viroj, Unusual mode of transmission of dengue, J. Inf. Devel. Coun., 4 (2009), 5154.
 10. G. S. Mohammed, A. B. Gumel, M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 1125.
 11. C. Liming, X. Li, Analysis of a simple vectorhost epidemic model with direct transmission, Disc. Dyna. Nat. Soc., 2010 (2010).
 12. M. Derouich, A. Boutayeb, Mathematical modelling and computer simulations of Dengue fever, App. Math. Comput., 177 (2006), 528544.
 13. F. B. Agusto, M. A. Khan, Optimal control strategies for dengue transmission in Pakistan, Math. Biosci., 305 (2018), 102121.
 14. E. Lourdes, C. Vargas, A model for dengue disease with variable human population, J. Math. Bio., 38 (1999), 220240.
 15. A. A. Lashari, S. Aly, K. Hattaf, G. Zaman, I. H. Jung, X. Z. Li, Presentation of malaria epidemics using multiple optimal controls, J. Appl. Math., 2012 (2012).
 16. A. A. Lashari, K. Hattaf, G. Zaman, A delay differential equation model of a vector borne disease with direct transmission, Int. J. Ecol. Econ. Stat., (27), (2012), 2535.
 17. A. A. Lashari, K. Hattaf, G. Zaman G, X. Z. Li, Backward bifurcation and optimal control of a vector borne disease, Appl. Math. Infor. Sci., 7 ( 2013), 301309.
 18. L. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited resources visited, Nonl. Anal. Real. World. Appl., 13 (2012), 312324.
 19. C. H. Li, A. M. Yousef, Bifurcation analysis of a networkbased SIR epidemic model with saturated treatment function, Chaos An Interdiscipl. J Nonl. Sci., 29(2019), 10.1063/1.5079631.
 20. K. Hattaf, Y. Yang, Global dynamics of an agestructured viral infection model with general incidence function and absorptionm, Int. J. Biomath., 11, (2018), https://doi.org/10.1142/S1793524518500651.
 21. P. Jia, C. Wang, G. Zhang, J. Ma, A rumor spreading model based on two propagation channels in social networks, Phys. A Statist. Mechan. Appl., 524 (2019), 342353.
 22. J. Yang, X. Wang, Threshold dynamics of an SIR model with nonlinear incidence rate and agedependent susceptibility, Complexity, 2018 (2018).
 23. G. Birkhoff, G. C. Rota, Ordinary Differential Eqnarrays [M1]. Boston: Ginn (1982).
 24. V. D. D. Pauline, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 180 (2002), 2948.
 25. C. CastilloChavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361404.
 26. L. Salle, P. Joseph, The stability of dynamical systems, Soc. Indus. Appl. Math., 1976.
 27. Y. Li. Michael, J. S. Muldowney, A geometric approach to globalstability problems, Siam. J. Math. Anal., 27 (1996), 10701083.
 28. R. H. Martin, Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl., 45 (1974), 432454.
 29. K. O. Okosun, R. Smith, Optimal control analysis of malariaschistosomiasis coinfection dynamics, Math. Biosci. Eng., 14 (2017), 377405.
 30. K. O. Okosun, O. D. Makinde, A coinfection model of malaria and cholera diseases with optimal control, Math. Biosci., 258 (2014), 1932.
 31. S. F. Saddiq, M. A. Khan, S. Islam, G. Zaman, I. I. H. Jung, et al. Optimal control of an epidemic model of leptospirosis with nonlinear saturated incidences, Ann. Res. Rev. Bio., 4 (2014), 560.
 32. M. A. Khan, R. Khan, Y. Khan, S. Islam, A mathematical analysis of Pine Wilt disease with variable population size and optimal control strategies, Chaos Solit. Fract., 108 (2018), 205217.
 33. M. A. Khan, K. Ali, E. Bonyah, K. O. Okosun, S. Islam & A. Khan, Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control, Sci. Rep., 7 (2017), 3115.
 34. F. H. Wendell, R. W. Rishel, Deterministic and stochastic optimal control, 1, Springer Science & Business Media, 2012.
 35. F. K. Renee, S. Lenhart, J. S. McNally, Optimizing chemotherapy in an HIV model, Elec. J. Diff. Eqn., 32, (1998), 112.
 36. L. S. Pontryagin, F. Moscow, Y. E. F. Mishchenko, et al, The mathematical theory of optimal processes, (1962).
This article has been cited by:
 1. Emile F. Doungmo Goufo, Yasir Khan, Qasim Ali Chaudhry, HIV and Shifting epicenters for COVID19, an alert for some countries, Chaos, Solitons & Fractals, 2020, 110030, 10.1016/j.chaos.2020.110030
 2. Gilberto GonzálezParra, Miguel DíazRodríguez, Abraham J. Arenas, Optimization of the Controls against the Spread of Zika Virus in Populations, Computation, 2020, 8, 3, 76, 10.3390/computation8030076
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *