Citation: Yunbo Tu, Shujing Gao, Yujiang Liu, Di Chen, Yan Xu. Transmission dynamics and optimal control of stage-structured HLB model[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5180-5205. doi: 10.3934/mbe.2019259
[1] | Fumin Zhang, Zhipeng Qiu, Balian Zhong, Tao Feng, Aijun Huang . Modeling Citrus Huanglongbing transmission within an orchard and its optimal control. Mathematical Biosciences and Engineering, 2020, 17(3): 2048-2069. doi: 10.3934/mbe.2020109 |
[2] | Zhenzhen Liao, Shujing Gao, Shuixian Yan, Genjiao Zhou . Transmission dynamics and optimal control of a Huanglongbing model with time delay. Mathematical Biosciences and Engineering, 2021, 18(4): 4162-4192. doi: 10.3934/mbe.2021209 |
[3] | Chenwei Song, Rui Xu, Ning Bai, Xiaohong Tian, Jiazhe Lin . Global dynamics and optimal control of a cholera transmission model with vaccination strategy and multiple pathways. Mathematical Biosciences and Engineering, 2020, 17(4): 4210-4224. doi: 10.3934/mbe.2020233 |
[4] | Jia Li . Malaria model with stage-structured mosquitoes. Mathematical Biosciences and Engineering, 2011, 8(3): 753-768. doi: 10.3934/mbe.2011.8.753 |
[5] | Ning Yu, Xue Zhang . Discrete stage-structured tick population dynamical system with diapause and control. Mathematical Biosciences and Engineering, 2022, 19(12): 12981-13006. doi: 10.3934/mbe.2022606 |
[6] | Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390 |
[7] | Yujie Sheng, Jing-An Cui, Songbai Guo . The modeling and analysis of the COVID-19 pandemic with vaccination and isolation: a case study of Italy. Mathematical Biosciences and Engineering, 2023, 20(3): 5966-5992. doi: 10.3934/mbe.2023258 |
[8] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[9] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
[10] | Alian Li-Martín, Ramón Reyes-Carreto, Cruz Vargas-De-León . Dynamics of a dengue disease transmission model with two-stage structure in the human population. Mathematical Biosciences and Engineering, 2023, 20(1): 955-974. doi: 10.3934/mbe.2023044 |
[1] | D. Farnsworth, K. A. Grogan, A. H. C. V. Bruggen, et al., The potential economic cost and response to greening in Florida citrus, Agric. Appl. Econ. Assoc., 29 (2014): 1–6. |
[2] | J. M. Bove, Huanglongbing: A destructive, newly-emerging, century-old disease of citrus, J. Plant. Pathol., 88 (2006): 7–37. |
[3] | S. Alvarez, D. Solis and M. Thomas, Can Florida's citrus industry be saved while preserving the environment? An economic analysis for the bio-control of the Asian Citrus Psyllid, S. Agric. Econ. Assoc., 2015. |
[4] | H. Su, Research and health management of citrus Huanglongbing in Taiwan, In: Proc Intern Research Conference on Huanglongbing, Orlando, Florida, USA, (2008): 57–92. |
[5] | A. J. Ayres, J. B. Jr and J. M. Bové, The experience with Huanglongbing management in Brazil, Acta. Hortic., 1065 (2015): 55–62. |
[6] | W. Li, Y. N. Yao, L. Wu, et al., Detection and seasonal variations of Huanglongbing disease in navel orange trees using direct lonization mass spectrometry, J. Agric. Food. Chem. , 67 (2019): 2265–2271. |
[7] | C. Yang, H. Chen, H. Chen, et al., Antioxidant and anticancer activities of essential oil from Gannan navel orange peel, Molecules, 22 (2017): 1931–1400. |
[8] | G. Rao, L. Huang, M. H. Liu, et al., Identification of Huanglongbing-infected navel oranges based on laser-induced breakdown spectroscopy combined with different Chemometric methods, Appl. Optics., 57 (2018): 8738–8742. |
[9] | Y. H. Liu and J. H. Tsai, Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina Citri Kuwayama (Homoptera: Psyllidae), Ann. Appl. Biol., 137 (2000): 201–206. |
[10] | T. H. Hung, S. C. Hung, C. N. Chen, et al., Detection by PCR of Candidatus Liberibacter asiaticus,the bacterium causing citrus huanglongbing in vector psyllids: application to the study of vector pathogen relationships, Plant Pathol., 53 (2004): 96–102. |
[11] | F. Wu, Y. J. Cen, X. L. Deng, et al., Movement of Diaphorina citri(Hemiptera: Liviidae) adults between huanglongbing infected and healthy citrus, Flor. Entomol., 98 (2015): 410–416. |
[12] | W. Shen, S. E. Halbert, E. Dickstein, et al., Occurrence and ingrove distribution of citrus huang- longbing in north central Florida, J. Plant. Pathol., 95 (2003): 361–371. |
[13] | K. L. Manjunath, S. E. Halbert, C. Ramadugu, et al., Detection of Candidatus Liberibacter asiaticus in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida, Phytopathology, 98 (2008): 387–396. |
[14] | E. E. G. Cardwell, L. L. Stelinski and P. A. Stansly, Biology and man agement of Asian Citrus Psyllid,vector of the Huanglongbing pathogens, Annu. Rev. Entomol., 58 (2013): 413–432. |
[15] | X. Z. Meng and Z. Q. Li, The dynamics of plant disease models with continuous and impulsive cultural control strategies, J. Theor. Biol., 266 (2010): 29–40. |
[16] | X. S. Zhang and J. Holt, Mathematical models of cross protection in the epidemiology of plant- virus disease, Anal. Theo. Plant. Pathol., 91 (2001): 924–934. |
[17] | S. J. Gao, L. J. Xia, Y. Liu, et al., A plant virus disease model with periodic environment and pulse roguing, Stud. Appl. Math., 136 (2016): 357–381. |
[18] | S. Y. Tang, Y. N. Xiao and R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 80 (2010): 894–921. |
[19] | M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting, J. Appl. Ecol., 31 (1994): 413–427. |
[20] | C. Chiyaka, B. H. Singer, S. E. Halbert, et al., Modeling huanglongbing transmission within a citrus tree, PNAS, 109 (2012): 12213–12218. |
[21] | R. A. Taylor, E. A. Mordecai, C. A. Gilligan, et al., Mathematical models are a powerful method to understand and control the spread of Huanglongbing, Peer J, 4 (2016): DOI 10.7717/peerj.2642. |
[22] | K. Jacobsen, J. Stupiansky and S. S. Pilyugin, Mathematical modeling of citrus groves infected by Huanglongbing, Math. Biosci. Eng, 10 (2013): 705–728. |
[23] | R. G. dA. Vilamiu, S. Ternes, G. A. Braga, et al., A model for Huanglongbing spread between citrus plants including delay times and human intervention, AIP. Conf. Proc., 1479 (2012): 2315–2319. |
[24] | S. J. Gao, L. Luo, S. X. Yan, et al., Dynamical behavior of a novel impulsive switching model for HLB with seasonal fluctuations, Complexity, 2018 (2018): 1–11. |
[25] | J.A. Lee, S. E. Halbert, W. O. Dawson, et al., Asymptomatic spread of Huanglongbing and implications for disease control, Proc. Natl. Acad. Sci. USA., 112 (2015): 7605–7610. |
[26] | M. Parry, G. J. Gibson, S. Parnell, et al., Bayesian inference for an emerging arboreal epidemic in the presence of control, Proc. Natl. Acad. Sci. USA., 111 (2014): 6258–6262. |
[27] | S. E. Halbert and K. L. Manjunath, Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida, Flor. Entomol., 87 (2004): 330–353. |
[28] | W. D. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008): 699–717. |
[29] | P. V. D. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29–48. |
[30] | H. R. Thieme, Convergence results and poincare-bendixson trichotomy for asymptotically au-tonomous differential equations, J. Math. Biol., 30 (1992): 755–763. |
[31] | P. V. D. Driessche and J. Watmough, Reproductive numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29–48. |
[32] | D. Xu and X. Q. Zhao, Dynamics in a periodic competitive model with stage structure, J. Math. Anal. Appl., 311 (2005): 417–438. |
[33] | X. Zhao, Dynamical Systems in Population Biology, Springer, New York, NY, USA, 2003. |
[34] | T. K. Kar and A. Batabyal, Stability analysis and optimal control of an SIR epidemic model with vaccination, Biosystems, 104 (2011): 127–135. |
[35] | L. Y. Pang, S. G. Ruan, S. H. Liu, et al. , Transmission dynamics and optimal control of measles epidemics, Appl. Math. Comput., 256 (2015): 131–147. |
[36] | M. A. Khan, R. Khan, Y. Khan, et al., A mathematical analysis of Pine Wilt disease with variable population size and optimal control strategies, Chaos, Solitons and Fract., 108 (2018): 205–217. |
[37] | W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, Berlin, 1975. |
[38] | D. L. Lukes, Differential equations: Classical to Controlled, Mathematics in Science and Engi-neering, Academic Press, New York, 1982. |
[39] | S. Lenhart and J. T. Workman, Optimal control applied to biological models, Mathematical and Computational Biology Series, Chapman & Hall/CRC Press, London/Boca Raton, 2007. |
[40] | X. Zhang, Y. Zhao and A. Neumann, Partial immunity and vaccination for influenza, J. Comput. Biol., 17 (2009): 1689–1696. |
[41] | T. Gottwald, Current epidemiological understanding of citrus Huanglongbing, Annu. Rev. Phy-topathol., 48 (2010): 119–139. |
[42] | K. S. P. Stelinski, R. H. Brlansky, T. A. Ebert, et al., Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae), J. Econ. Entomol., 103 (2010): 1531–1541. |
[43] | M. E. Rogers, General pest management considerations, Citrus. Ind., 89 (2008): 12–15. |
1. | Nasim Muhammad, Hermann J Eberl, Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behavior, 2020, 84, 10075704, 105207, 10.1016/j.cnsns.2020.105207 | |
2. | Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of the Honeybee–Varroa destructor–Acute Bee Paralysis Virus System with Seasonal Effects, 2015, 77, 0092-8240, 1493, 10.1007/s11538-015-0093-5 | |
3. | Nasim Muhammad, Hermann J. Eberl, 2018, Chapter 35, 978-3-319-99718-6, 385, 10.1007/978-3-319-99719-3_35 | |
4. | K. Messan, G. DeGrandi-Hoffman, C. Castillo-Chavez, Y. Kang, M. Banerjee, A. Perasso, E. Venturino, Migration Effects on Population Dynamics of the Honeybee-mite Interactions, 2017, 12, 1760-6101, 84, 10.1051/mmnp/201712206 | |
5. | Alex Petric, Ernesto Guzman-Novoa, Hermann J. Eberl, A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies, 2017, 11, 1751-3758, 348, 10.1080/17513758.2016.1237682 | |
6. | Komi Messan, Marisabel Rodriguez Messan, Jun Chen, Gloria DeGrandi-Hoffman, Yun Kang, Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality, 2021, 440, 03043800, 109359, 10.1016/j.ecolmodel.2020.109359 | |
7. | Lotte Sewalt, Kristen Harley, Peter van Heijster, Sanjeeva Balasuriya, Influences of Allee effects in the spreading of malignant tumours, 2016, 394, 00225193, 77, 10.1016/j.jtbi.2015.12.024 | |
8. | Brian Dennis, William P. Kemp, James A.R. Marshall, How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee, 2016, 11, 1932-6203, e0150055, 10.1371/journal.pone.0150055 | |
9. | Ross D. Booton, Yoh Iwasa, James A.R. Marshall, Dylan Z. Childs, Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies, 2017, 420, 00225193, 213, 10.1016/j.jtbi.2017.03.009 | |
10. | Mataeli B. Lerata, Jean M-S. Lubuma, Abdullahi A. Yusuf, Continuous and discrete dynamical systems for the declines of honeybee colonies, 2018, 41, 01704214, 8724, 10.1002/mma.5093 | |
11. | P. Magal, G. F. Webb, Yixiang Wu, An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination, 2019, 81, 0092-8240, 4908, 10.1007/s11538-019-00662-5 | |
12. | Kenneth John Aitken, “If it looks like a duck…” – why humans need to focus on different approaches than insects if we are to become efficiently and effectively ultrasocial, 2016, 39, 0140-525X, 10.1017/S0140525X15000977 | |
13. | A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors, 2016, 13, 23978325, 10.2903/sp.efsa.2016.EN-1069 | |
14. | Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus, 2017, 79, 0092-8240, 1218, 10.1007/s11538-017-0281-6 | |
15. | Yun Kang, Krystal Blanco, Talia Davis, Ying Wang, Gloria DeGrandi-Hoffman, Disease dynamics of honeybees with Varroa destructor as parasite and virus vector, 2016, 275, 00255564, 71, 10.1016/j.mbs.2016.02.012 | |
16. | J. Reilly Comper, Hermann J. Eberl, Mathematical modelling of population and food storage dynamics in a honey bee colony infected with Nosema ceranae, 2020, 6, 24058440, e04599, 10.1016/j.heliyon.2020.e04599 | |
17. | P. Magal, G. F. Webb, Yixiang Wu, A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees, 2020, 80, 0303-6812, 2363, 10.1007/s00285-020-01498-7 | |
18. | Alessio Ippolito, Andreas Focks, Maj Rundlöf, Andres Arce, Marco Marchesi, Franco Maria Neri, Agnès Rortais, Csaba Szentes, Domenica Auteri, Analysis of background variability of honey bee colony size, 2021, 18, 23978325, 10.2903/sp.efsa.2021.EN-6518 | |
19. | Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang, Review on mathematical modeling of honeybee population dynamics, 2021, 18, 1551-0018, 9606, 10.3934/mbe.2021471 | |
20. | Partha Sarathi Mandal, Sunil Maity, Impact of demographic variability on the disease dynamics for honeybee model, 2022, 32, 1054-1500, 083120, 10.1063/5.0096638 | |
21. | Hermann J. Eberl, Nasim Muhammad, Mathematical modelling of between hive transmission of Nosemosis by drifting, 2022, 114, 10075704, 106636, 10.1016/j.cnsns.2022.106636 | |
22. | David C. Elzinga, W. Christopher Strickland, Generalized Stressors on Hive and Forager Bee Colonies, 2023, 85, 0092-8240, 10.1007/s11538-023-01219-3 | |
23. | Atanas Z. Atanasov, Miglena N. Koleva, Lubin G. Vulkov, Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination, 2023, 15, 2073-8994, 2099, 10.3390/sym15122099 | |
24. | Miglena N. Koleva, Lubin G. Vulkov, Reconstruction coefficient analysis of honeybee collapse due to pesticide contamination, 2023, 2675, 1742-6588, 012024, 10.1088/1742-6596/2675/1/012024 | |
25. | Atanas Z. Atanasov, Slavi G. Georgiev, Lubin G. Vulkov, Analysis of the Influence of Brood Deaths on Honeybee Population, 2024, 14, 2076-3417, 11412, 10.3390/app142311412 |