Research article Special Issues

Biomechanical analysis of the meniscus and cartilage of the knee during a typical Tai Chi movement—brush-knee and twist-step

  • Received: 12 November 2018 Accepted: 17 December 2018 Published: 30 January 2019
  • This study aimed to analyze the biomechanical response of the knee cartilage and meniscus to a typical Tai Chi (TC) movement, brush-knee and twist-step (BKTS). Kinematic and kinetic data was recorded while an experienced TC practitioner performed normal walking, jogging and BKTS. The kinetic data were then imported into a validated finite element model of the knee joint to examine the biomechanical response of the articular cartilage and meniscus. Compared with walking and jogging, the BKTS movement showed a greater increase in the range of motion (ROM) of the knee. The ROM in the sagittal plane was 56° (walking), 38° (jogging) and 93° (BKTS). In coronal plane, the knee ROM was 8° (walking), 11° (jogging) and 28° (BKTS). And in horizontal plane the ROM was 17° (walking), 15° (jogging) and 29° (BKTS). The finite element simulation demonstrated that the pressure contact stress is much more concentrated during walking and jogging than BKTS, which is consistent with the lower peak contact stresses recorded on the cartilage and meniscus. In conclusion, the TC movement produced a gentler stress state on the meniscus and cartilage, while also requiring a greater knee ROM. Practicing TC may have a lower risk of knee joint injury compared to walking and jogging.

    Citation: Yan Li, Kuan Wang, Lejun Wang, Tongbo Chang, Shengnian Zhang, Wenxin Niu. Biomechanical analysis of the meniscus and cartilage of the knee during a typical Tai Chi movement—brush-knee and twist-step[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 898-908. doi: 10.3934/mbe.2019042

    Related Papers:

    [1] Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu . Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences and Engineering, 2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503
    [2] Inna Samuilik, Felix Sadyrbaev . On trajectories of a system modeling evolution of genetic networks. Mathematical Biosciences and Engineering, 2023, 20(2): 2232-2242. doi: 10.3934/mbe.2023104
    [3] Yujing Qiao, Ning Lv, Baoming Jia . Multiview intelligent networking based on the genetic evolution algorithm for precise 3D measurements. Mathematical Biosciences and Engineering, 2023, 20(8): 14260-14280. doi: 10.3934/mbe.2023638
    [4] Yanyun Li, Juhua Liang . Models for determining the optimal switching time in chemical control of pest with pesticide resistance. Mathematical Biosciences and Engineering, 2021, 18(1): 471-494. doi: 10.3934/mbe.2021026
    [5] Chun Li, Ying Chen, Zhijin Zhao . Frequency hopping signal detection based on optimized generalized S transform and ResNet. Mathematical Biosciences and Engineering, 2023, 20(7): 12843-12863. doi: 10.3934/mbe.2023573
    [6] Kongfu Hu, Lei Wang, Jingcao Cai, Long Cheng . An improved genetic algorithm with dynamic neighborhood search for job shop scheduling problem. Mathematical Biosciences and Engineering, 2023, 20(9): 17407-17427. doi: 10.3934/mbe.2023774
    [7] Zhilan Feng, Carlos Castillo-Chavez . The influence of infectious diseases on population genetics. Mathematical Biosciences and Engineering, 2006, 3(3): 467-483. doi: 10.3934/mbe.2006.3.467
    [8] Bowen Ding, Zhaobin Ma, Shuoyan Ren, Yi Gu, Pengjiang Qian, Xin Zhang . A genetic algorithm with two-step rank-based encoding for closed-loop supply chain network design. Mathematical Biosciences and Engineering, 2022, 19(6): 5925-5956. doi: 10.3934/mbe.2022277
    [9] Lorenzo Mari, Marino Gatto, Renato Casagrandi . Local resource competition and the skewness of the sex ratio: a demographic model. Mathematical Biosciences and Engineering, 2008, 5(4): 813-830. doi: 10.3934/mbe.2008.5.813
    [10] Jesse Berwald, Marian Gidea . Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences and Engineering, 2014, 11(4): 723-740. doi: 10.3934/mbe.2014.11.723
  • This study aimed to analyze the biomechanical response of the knee cartilage and meniscus to a typical Tai Chi (TC) movement, brush-knee and twist-step (BKTS). Kinematic and kinetic data was recorded while an experienced TC practitioner performed normal walking, jogging and BKTS. The kinetic data were then imported into a validated finite element model of the knee joint to examine the biomechanical response of the articular cartilage and meniscus. Compared with walking and jogging, the BKTS movement showed a greater increase in the range of motion (ROM) of the knee. The ROM in the sagittal plane was 56° (walking), 38° (jogging) and 93° (BKTS). In coronal plane, the knee ROM was 8° (walking), 11° (jogging) and 28° (BKTS). And in horizontal plane the ROM was 17° (walking), 15° (jogging) and 29° (BKTS). The finite element simulation demonstrated that the pressure contact stress is much more concentrated during walking and jogging than BKTS, which is consistent with the lower peak contact stresses recorded on the cartilage and meniscus. In conclusion, the TC movement produced a gentler stress state on the meniscus and cartilage, while also requiring a greater knee ROM. Practicing TC may have a lower risk of knee joint injury compared to walking and jogging.




    [1] J. W. Bijlsma, F. Berenbaum and F. P. Lafeber, Osteoarthritis: An update with relevance for clinical practice, Lancet, 377 (2011), 2115–2126.
    [2] G. Peat, R. McCarney and P. Croft, Knee pain and osteoarthritis in older adults: A review of community burden and current use of primary health care, Ann. Rheum. Dis., 60 (2011), 91–97.
    [3] W. D. Chang, S. Chen, C. L. Lee, H. Y. Lin and P. T. Lai, The effects of tai chi chuan on improving mind-body health for knee osteoarthritis patients: A systematic review and meta-analysis, Evid. Based. Complement. Alternat. Med., 2016 (2016), 1813979.
    [4] R. Lauche, J. Langhorst, G. Dobos and H. Cramer, A systematic review and meta-analysis of Tai Chi for osteoarthritis of the knee, Complement. Ther. Med., 21 (2013), 396–406.
    [5] Q. G. Zhu, L. Y. Huang, X. Wu, L. Wang, Y. Zhang, M. Fang, Y. Liu and J. X. Li, Effects of Tai Ji Quan training on gait kinematics in older Chinese women with knee osteoarthritis: A randomized controlled trial. J. Sport Health Sci., 5 (2016), 297–303.
    [6] M. C. Hochberg, R. D. Altman, K. T. April, M. Benkhalti, G. Guyatt, J. McGowan, T. Towheed, V. Welch, G. Wells and P. Tugwell, American college of rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee, Arth. Care. Res., 64 (2012), 465–474.
    [7] J. L. Astephen, K. J. Deluzio, G. E. Caldwell and M. J. Dunbar, Biomechanical changes at the hip, kneeand ankle joints during gait are associated with knee osteoarthritis severity, J. Orthop. Res., 26 (2008), 332–341.
    [8] B. D. Jackson, A. E. Wluka, A. J. Teichtahl, M. E. Morris and F. M. Cicuttini, Reviewing knee osteoarthritis-a biomechanical perspective, J. Sci. Med. Sport, 7 (2004), 347–357.
    [9] D. W. Mao, Y. L. Hong and J. X. Li, Characteristics of foot movement in Tai Chi exercise, Phys. Ther., 86 (2006), 215–222.
    [10] N. Y. Law and J. X. Li, The temporospatial and kinematic characteristics of typical tai chi movements: Repulse monkey and wave-hand in cloud, Res. Sports Med., 22 (2014), 111–123.
    [11] D. J. Hunter, Y. Q. Zhang, J. B. Niu, X. Tu, S. Amin, M. Clancy, A. Guermazi, M. Grigorian, D. Gale and D. T. Felson, The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis, Arthritis. Rheu., 54 (2010), 795–801.
    [12] Z. Deng, K. Wang, H. H. Wang, T. Y. Lan, H. S. Zhan and W. X. Niu, A finite element study of traditional Chinese cervical manipulation, Eur. Spine J., 22 (2017), 2308–2317.
    [13] J. Yao, G. M. Kuang, D. W. Wong, W. X. Niu, M. Zhang and Y. B. Fan, Influence of screw length and diameter on tibial strain energy density distribution after anterior cruciate ligament reconstruction, Acta. Mech. Sinica., 30 (2014), 241–249.
    [14] G. Wu and D. Millon, Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners, Clin. Biomech., 23 (2008), 787–795.
    [15] R. Song, B. L. Roberts, E. O. Lee, P. Lam and S. C. Bae, A randomized study of the effects of t'ai chi on muscle strength, bone mineral density, and fear of falling in women with osteoarthritis, J. Altern. Complem. Med., 16 (2010), 227–233.
    [16] P. F. Tsai, J. Y. Chang, C. Beck, Y. F. Kuo and F. J. Keefe, A pilot cluster-randomized trial of a 20-week tai chi program in elders with cognitive impairment and osteoarthritic knee: Effects on pain and other health outcomes, J. Pain Symptom. Manage., 45 (2013), 660–669.
    [17] K. N. Radzak, A. M. Putnam, K. Tamura, R. K. Hetzler and C. D. Stickley, Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals, Gait Posture, 51 (2017), 268–274.
    [18] W. K. Lam, J. Ryue, K. K. Lee, S. K. Park, J. T. Cheung and J. Ryu, Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players? PloS One, 12 (2017), e0174604.
    [19] G. C. Fanelli, C. J. Edson, K. N. Reinheimer and R. Garofalo, Posterior cruciate ligament and posterolateral corner reconstruction, Sports Med. Arthrosc., 15 (2007), 168–175.
    [20] T. L. Donahue, M. B. Fisher and S. A. Maher, Meniscus mechanics and mechanobiology, J. Biomech., 48 (2015), 1341–1342.
    [21] C. Waller, D. Hayes, J. E. Block and N. J. London, Unload it: The key to the treatment of knee osteoarthritis, Knee. Surg. Sport Tr. A., 19 (2011), 1823–1829.
    [22] M. Taylor, K. E. Tanner and M. A. Freeman, Finite element analysis of the implanted proximal tibia: A relationship between the initial cancellous bone stresses and implant migration, J. Biomech., 31 (1998), 303–310.
    [23] M. Kazemi, A viscoelastic poromechanical model of the knee joint in large compression, Med. Eng. Phys., 36 (2014), 998–1006.
    [24] T. Fukubayashi and H. Kurosawa, The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta. Orthop. Scand., 51 (1980), 871–879.
    [25] K. W. Chau and D. W. Mao, The characteristics of foot movements in tai chi chuan, Res. Sports Med., 14 (2006), 19–28.
    [26] Y. Hong and J. X. Li, Biomechanics of Tai Chi: A review, Sports Biomech., 6 (2007), 453–464.
    [27] S. D. Waldman, C. G. Spiteri, M. D. Grynpas, R. M. Pilliar and R. A. Kandel, Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage, Tissue. Eng., 10 (2004), 1323–1331.
    [28] T. M. Griffin and F. Guilak, The role of mechanical loading in the onset and progression of osteoarthritis, Exerc. Sport Sci. Rev., 33 (2005), 195–200.
    [29] L. E. Defrate, R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare and G. Li, The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: An in vivo imaging analysis, Am. J. Sports Med., 34 (2006), 1240–1246.
    [30] G. Wu, W. Liu, J. Hitt and D. Millon, Spatial, temporal and muscle action patterns of Tai Chi gait, J. Electromyogr. Kines., 14 (2004), 343–354.
    [31] Q. H. Huang and Z. Z. Zeng, A Review on Real-Time 3D Ultrasound Imaging Technology, Biomed. Res. Int., 2017 (2017), 6027029.
    [32] Q. H. Huang, B. W. Wu, J. L. Lan and X. L. Li, Fully Automatic Three-Dimensional Ultrasound Imaging Based on Conventional B-scan, IEEE. Trans. Biomed. Circuits. Syst., 12 (2018), 426–436.
    [33] Q. H. Huang, J. L. Lan and X. L. Li, Robotic arm based automatic ultrasound scanning for three-dimensional imaging, IEEE. Trans. Ind. Inform. (in press). DOI: 10.1109/TII.2018.2871864.
  • This article has been cited by:

    1. I.P. Cabrera, P. Cordero, G. Gutiérrez, J. Martínez, M. Ojeda-Aciego, Finitary coalgebraic multisemilattices and multilattices, 2012, 219, 00963003, 31, 10.1016/j.amc.2011.10.081
    2. Irene Paniello, Genetic coalgebras and their cubic stochastic matrices, 2017, 16, 0219-4988, 1750239, 10.1142/S0219498817502395
    3. Manuel Arenas, Alicia Labra, Irene Paniello, Lotka–Volterra coalgebras, 2021, 0308-1087, 1, 10.1080/03081087.2021.1882372
    4. M. Hamidi, Arsham Borumand Saeid, EQ-algebras based on fuzzy hyper EQ-filters, 2019, 23, 1432-7643, 5289, 10.1007/s00500-018-3456-7
    5. Wei Wang, Xiao-Long Xin, On fuzzy filters of Heyting-algebras, 2011, 4, 1937-1179, 1611, 10.3934/dcdss.2011.4.1611
    6. Irene Paniello, In-evolution operators in genetic coalgebras, 2021, 614, 00243795, 197, 10.1016/j.laa.2020.03.032
    7. I. Paniello, Evolution coalgebras, 2019, 67, 0308-1087, 1539, 10.1080/03081087.2018.1460795
    8. I. Paniello, Backwards genetic inheritance through coalgebra-graphs, 2017, 65, 0308-1087, 943, 10.1080/03081087.2016.1217824
    9. I. Paniello, Evolution coalgebras on chicken populations, 2020, 68, 0308-1087, 528, 10.1080/03081087.2018.1508408
    10. M. Hamidi, A. Broumand Saeid, EQ-algebras based on hyper EQ-algebras, 2018, 24, 1405-213X, 11, 10.1007/s40590-016-0159-x
    11. Irene Paniello, A Coalgebraic Structure on Bisexual Populations, 2020, 1386-923X, 10.1007/s10468-020-09978-6
    12. Mingze Zhao, Huilan Li, A pair of dual Hopf algebras on permutations, 2021, 6, 2473-6988, 5106, 10.3934/math.2021302
    13. Baltasar Trancón y Widemann, 2013, Chapter 1483, 978-1-4419-9862-0, 434, 10.1007/978-1-4419-9863-7_1483
    14. Peter D Jarvis, Jeremy G Sumner, Systematics and symmetry in molecular phylogenetic modelling: perspectives from physics, 2019, 52, 1751-8113, 453001, 10.1088/1751-8121/ab305b
    15. Irene Paniello, Marginal distributions of genetic coalgebras, 2014, 68, 0303-6812, 1071, 10.1007/s00285-013-0663-9
    16. Irene Paniello, On evolution operators of genetic coalgebras, 2017, 74, 0303-6812, 149, 10.1007/s00285-016-1025-1
    17. Irene Paniello, Stochastic matrices arising from genetic inheritance, 2011, 434, 00243795, 791, 10.1016/j.laa.2010.09.042
    18. Farrukh Mukhamedov, Izzat Qaralleh, On S-Evolution Algebras and Their Enveloping Algebras, 2021, 9, 2227-7390, 1195, 10.3390/math9111195
    19. Manuel Ceballos, Raúl M. Falcón, Juan Núñez-Valdés, Ángel F. Tenorio, A historical perspective of Tian’s evolution algebras, 2022, 40, 07230869, 819, 10.1016/j.exmath.2021.11.004
    20. Farrukh Mukhamedov, Izzat Qaralleh, Entropy Treatment of Evolution Algebras, 2022, 24, 1099-4300, 595, 10.3390/e24050595
    21. Farrukh Mukhamedov, Izzat Qaralleh, On Extendibility of Evolution Subalgebras Generated by Idempotents, 2023, 11, 2227-7390, 2764, 10.3390/math11122764
    22. Irene Paniello, Skewed comultiplications in genetic coalgebras, 2024, 23, 0219-4988, 10.1142/S0219498824500506
    23. Manuel Arenas, Alicia Labra, Irene Paniello, On the structure of Lotka-Volterra coalgebras, 2024, 0092-7872, 1, 10.1080/00927872.2023.2301516
    24. Irene Paniello, Backwards inheritance in evolution coalgebras of chicken populations, 2024, 23, 0219-4988, 10.1142/S0219498824502396
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8096) PDF downloads(1050) Cited by(17)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog