Research article Special Issues

Dynamics and implications of models for intermittent androgen suppression therapy

  • In this paper, we formulate a three cell population model of intermittent androgen suppression therapy for cancer patients to study the treatment resistance development. We compare it with other models that have different underlying cell population structure using patient prostate specific antigen (PSA) and androgen data sets. Our results show that in the absence of extensive data, a two cell population structure performs slightly better in replicating and forecasting the dynamics observed in clinical PSA data. We also observe that at least one absorbing state should be present in the cell population structure of a plausible model for it to produce treatment resistance under continuous hormonal therapy. This suggests that the heterogeneity of prostate cancer cell population can be represented by two types of cells differentiated by their level of dependence on androgen, where the two types are linked via an irreversible transformation.

    Citation: Tin Phan, Changhan He, Alejandro Martinez, Yang Kuang. Dynamics and implications of models for intermittent androgen suppression therapy[J]. Mathematical Biosciences and Engineering, 2019, 16(1): 187-204. doi: 10.3934/mbe.2019010

    Related Papers:

    [1] Alacia M. Voth, John G. Alford, Edward W. Swim . Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences and Engineering, 2017, 14(3): 777-804. doi: 10.3934/mbe.2017043
    [2] Cassidy K. Buhler, Rebecca S. Terry, Kathryn G. Link, Frederick R. Adler . Do mechanisms matter? Comparing cancer treatment strategies across mathematical models and outcome objectives. Mathematical Biosciences and Engineering, 2021, 18(5): 6305-6327. doi: 10.3934/mbe.2021315
    [3] Zhimin Wu, Tin Phan, Javier Baez, Yang Kuang, Eric J. Kostelich . Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy. Mathematical Biosciences and Engineering, 2019, 16(5): 3512-3536. doi: 10.3934/mbe.2019176
    [4] Avner Friedman, Harsh Vardhan Jain . A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences and Engineering, 2013, 10(3): 591-608. doi: 10.3934/mbe.2013.10.591
    [5] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [6] Abeer S. Alnahdi, Muhammad Idrees . Nonlinear dynamics of estrogen receptor-positive breast cancer integrating experimental data: A novel spatial modeling approach. Mathematical Biosciences and Engineering, 2023, 20(12): 21163-21185. doi: 10.3934/mbe.2023936
    [7] Heyrim Cho, Allison L. Lewis, Kathleen M. Storey, Anna C. Zittle . An adaptive information-theoretic experimental design procedure for high-to-low fidelity calibration of prostate cancer models. Mathematical Biosciences and Engineering, 2023, 20(10): 17986-18017. doi: 10.3934/mbe.2023799
    [8] Leonardo Schultz, Antonio Gondim, Shigui Ruan . Gompertz models with periodical treatment and applications to prostate cancer. Mathematical Biosciences and Engineering, 2024, 21(3): 4104-4116. doi: 10.3934/mbe.2024181
    [9] Erin N. Bodine, K. Lars Monia . A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2017, 14(4): 881-899. doi: 10.3934/mbe.2017047
    [10] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
  • In this paper, we formulate a three cell population model of intermittent androgen suppression therapy for cancer patients to study the treatment resistance development. We compare it with other models that have different underlying cell population structure using patient prostate specific antigen (PSA) and androgen data sets. Our results show that in the absence of extensive data, a two cell population structure performs slightly better in replicating and forecasting the dynamics observed in clinical PSA data. We also observe that at least one absorbing state should be present in the cell population structure of a plausible model for it to produce treatment resistance under continuous hormonal therapy. This suggests that the heterogeneity of prostate cancer cell population can be represented by two types of cells differentiated by their level of dependence on androgen, where the two types are linked via an irreversible transformation.




    [1] Prostate cancer, Am. Cancer Soc., 4–18, 28–29, 56–57.0
    [2] J. Baez and Y. Kuang, Mathematical models of androgen resistance in prostate cancer patients under intermittent androgen suppression therapy, Appl. Sci., 6 (2016), 352.
    [3] N. Bruchovsky, L. Klotz, J. Crook, S. Malone, C. Ludgate, W. J. Morris, M. E. Gleave and S. L. Goldenberg, Final results of the canadian prospective phase ii trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer, Cancer, 107 (2006), 389–395.
    [4] N. Buchan and S. Goldenberg, Intermittent versus continuous androgen suppression therapy: do we have consensus yet?, Cur. Oncol., 17 (2010), S45.
    [5] L. M. Cook, A. Araujo, J. M. Pow-Sang, M. M. Budzevich, D. Basanta and C. C. Lynch, Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer, Sci. Rep., 6 (2016), 29384.
    [6] M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264–272.
    [7] S. E. Eikenberry, J. D. Nagy and Y. Kuang, The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model, Biol. Direct, 5 (2010), 24.
    [8] M. C. Eisenberg and H. V. Jain, A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study, J. Theor. Biol., 431 (2017), 63–78.
    [9] M. Elishmereni, Y. Kheifetz, I. Shukrun, G. H. Bevan, D. Nandy, K. M. McKenzie, M. Kohli and Z. Agur, Predicting time to castration resistance in hormone sensitive prostate cancer by a personalization algorithm based on a mechanistic model integrating patient data, The Prostate, 76 (2016), 48–57.
    [10] R. Everett, A. Packer and Y. Kuang, Can mathematical models predict the outcomes of prostate cancer patients undergoing intermittent androgen deprivation therapy?, Biophys. Rev. Letters, 9 (2014), 173–191.
    [11] B. J. Feldman and D. Feldman, The development of androgen-independent prostate cancer, Nat. Rev. Cancer, 1 (2001), 34–45.
    [12] J. L. Fleck and C. G. Cassandras, Optimal design of personalized prostate cancer therapy using infinitesimal perturbation analysis, Nonlin. Analysis Hybrid System., 25 (2017), 246–262.
    [13] Q. Guo, Y. Tao and K. Aihara, Mathematical modeling of prostate tumor growth under intermittent androgen suppression with partial differential equations, lnt. J. Bifurcat. Chaos, 18 (2008), 3789– 3797.
    [14] T. Hatano, Y. Hirata, H. Suzuki and K. Aihara, Comparison between mathematical models of intermittent androgen suppression for prostate cancer, J. Theor. Biol., 366 (2015), 33–45.
    [15] Y. Hirata, N. Bruchovsky and K. Aihara, Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517–527.
    [16] Y. Hirata, K. Morino, K. Akakura, C. S. Higano and K. Aihara, Personalizing androgen suppression for prostate cancer using mathematical modeling, Sci. Rep., 8 (2018), 2673.
    [17] A. M. Ideta, G. Tanaka, T. Takeuchi and K. Aihara, A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlin. Sci., 18 (2008), 593–614.
    [18] T. L. Jackson, A mathematical model of prostate tumor growth and androgen-independent relapse, Discrete Cont. Dyn. B, 4 (2004), 187–202.
    [19] Y. Kuang, Basic properties of mathematical population models, J. Biomath., 17 (2002), 129–142.
    [20] Y. Kuang, J. D. Nagy and S. E. Eikenberry, Introduction to mathematical oncology, vol. 59, CRC Press, 2016.
    [21] J. D. Morken, A. Packer, R. A. Everett, J. D. Nagy and Y. Kuang, Mechanisms of resistance to intermittent androgen deprivation in patients with prostate cancer identified by a novel computational method, Cancer Res., 74 (2014), 3673–3683.
    [22] T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, Aip. Advances, 2 (2012), 011002.
    [23] A. Saltelli, K. Chan and E. M. Scott, Sensitivity analysis, Wiley New York, 2000.
    [24] T. Shimada and K. Aihara, A nonlinear model with competition between prostate tumor cells and its application to intermittent androgen suppression therapy of prostate cancer, Math. Biosci., 214 (2008), 134–139.
    [25] R. L. Siegel, K. D. Miller and A. Jemal, Cancer statistics, 2016, CA Cancer J. Clinic., 66 (2016), 7–30.
    [26] H. Vardhan Jain and A. Friedman, Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy, Discrete Cont. Dyn. B, 18.
    [27] A. Wolf, R. C. Wender, R. B. Etzioni, I. M. Thompson, A. V. D'Amico, R. J. Volk, D. D. Brooks, C. Dash, I. Guessous, K. Andrews et al., American cancer society guideline for the early detection of prostate cancer: update 2010, CA Cancer J. Clinic., 60 (2010), 70–98.
    [28] J. Yang, T.J. Zhao, C.Q. Yuan, J.H. Xie and F.F. Hao, A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression, J. Theor. Biol., 404 (2016), 66– 72.
  • This article has been cited by:

    1. Tin Phan, Sharon M. Crook, Alan H. Bryce, Carlo C. Maley, Eric J. Kostelich, Yang Kuang, Review: Mathematical Modeling of Prostate Cancer and Clinical Application, 2020, 10, 2076-3417, 2721, 10.3390/app10082721
    2. Tin Phan, Kyle Nguyen, Preeti Sharma, Yang Kuang, The Impact of Intermittent Androgen Suppression Therapy in Prostate Cancer Modeling, 2018, 9, 2076-3417, 36, 10.3390/app9010036
    3. Paul A. Valle, Luis N. Coria, Karla D. Carballo, Chemoimmunotherapy for the treatment of prostate cancer: Insights from mathematical modelling, 2021, 90, 0307904X, 682, 10.1016/j.apm.2020.09.021
    4. William Meade, Allison Weber, Tin Phan, Emily Hampston, Laura Figueroa Resa, John Nagy, Yang Kuang, High Accuracy Indicators of Androgen Suppression Therapy Failure for Prostate Cancer—A Modeling Study, 2022, 14, 2072-6694, 4033, 10.3390/cancers14164033
    5. Guillermo Lorenzo, Nadia di Muzio, Chiara Lucrezia Deantoni, Cesare Cozzarini, Andrei Fodor, Alberto Briganti, Francesco Montorsi, Víctor M. Pérez-García, Hector Gomez, Alessandro Reali, Patient-specific forecasting of postradiotherapy prostate-specific antigen kinetics enables early prediction of biochemical relapse, 2022, 25, 25890042, 105430, 10.1016/j.isci.2022.105430
    6. S. Pasetto, H. Enderling, R. A. Gatenby, R. Brady-Nicholls, Intermittent Hormone Therapy Models Analysis and Bayesian Model Comparison for Prostate Cancer, 2022, 84, 0092-8240, 10.1007/s11538-021-00953-w
    7. Tin Phan, Justin Bennett, Taylor Patten, Practical Understanding of Cancer Model Identifiability in Clinical Applications, 2023, 13, 2075-1729, 410, 10.3390/life13020410
    8. Miaoran Yao, Yongxin Zhang, Wendi Wang, Selection of prostate cancer therapy strategy under early androgen suppression treatment, 2024, 132, 10075704, 107914, 10.1016/j.cnsns.2024.107914
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5595) PDF downloads(714) Cited by(8)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog