Citation: Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer[J]. Mathematical Biosciences and Engineering, 2017, 14(3): 777-804. doi: 10.3934/mbe.2017043
[1] | Ewa Majchrzak, Mikołaj Stryczyński . Dual-phase lag model of heat transfer between blood vessel and biological tissue. Mathematical Biosciences and Engineering, 2021, 18(2): 1573-1589. doi: 10.3934/mbe.2021081 |
[2] | Salman Lari, Hossein Rajabzadeh, Mohammad Kohandel, Hyock Ju Kwon . A holistic physics-informed neural network solution for precise destruction of breast tumors using focused ultrasound on a realistic breast model. Mathematical Biosciences and Engineering, 2024, 21(10): 7337-7372. doi: 10.3934/mbe.2024323 |
[3] | Dora Luz Castro-López, Macarena Trujillo, Enrique Berjano, Ricardo Romero-Mendez . Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered. Mathematical Biosciences and Engineering, 2020, 17(6): 7980-7993. doi: 10.3934/mbe.2020405 |
[4] | Thaweesak Trongtirakul, Sos Agaian, Adel Oulefki . Automated tumor segmentation in thermographic breast images. Mathematical Biosciences and Engineering, 2023, 20(9): 16786-16806. doi: 10.3934/mbe.2023748 |
[5] | EYK Ng, Leonard Jun Cong Looi . Numerical analysis of biothermal-fluids and cardiac thermal pulse of abdominal aortic aneurysm. Mathematical Biosciences and Engineering, 2022, 19(10): 10213-10251. doi: 10.3934/mbe.2022479 |
[6] | Hu Dong, Gang Liu, Xin Tong . Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation. Mathematical Biosciences and Engineering, 2021, 18(2): 1340-1351. doi: 10.3934/mbe.2021070 |
[7] | Chii-Dong Ho, Jr-Wei Tu, Hsuan Chang, Li-Pang Lin, Thiam Leng Chew . Optimizing thermal efficiencies of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes. Mathematical Biosciences and Engineering, 2022, 19(9): 8648-8670. doi: 10.3934/mbe.2022401 |
[8] | Haiyan Song, Cuihong Liu, Shengnan Li, Peixiao Zhang . TS-GCN: A novel tumor segmentation method integrating transformer and GCN. Mathematical Biosciences and Engineering, 2023, 20(10): 18173-18190. doi: 10.3934/mbe.2023807 |
[9] | Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325 |
[10] | Xiao Zou, Jintao Zhai, Shengyou Qian, Ang Li, Feng Tian, Xiaofei Cao, Runmin Wang . Improved breast ultrasound tumor classification using dual-input CNN with GAP-guided attention loss. Mathematical Biosciences and Engineering, 2023, 20(8): 15244-15264. doi: 10.3934/mbe.2023682 |
[1] | [ P.-A. Abrahamsson, Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: A systematic review of the literature, European Urology, 57 (2010): 49-59. |
[2] | [ H. T. Banks,S. Dediu,S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, J. Inverse Ill-Posed Probl., 15 (2007): 683-708. |
[3] | [ H.T. Banks,D.M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models, J. Math. Biol., 50 (2005): 607-625. |
[4] | [ N. C. Buchan,S. L. Goldenberg, Intermittent androgen suppression for prostate cancer, Nature Reviews Urology, 7 (2010): 552-560. |
[5] | [ N. Chitnis,J.M. Hyman,J.M. Chushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008): 1272-1296. |
[6] | [ R.A. Everett,A.M. Packer,Y. Kuang, Can mathematical models predict the outcomes of prostate cancer patients undergoing intermittent androgen deprivation therapy?, Biophys. Rev. Lett., 9 (2014): 139-157. |
[7] | [ J. K. Hale, Ordinary Differential Equations, 2nd edition, Krieger Publishing, Malabar FL, 1980. |
[8] | [ Y. Hirata,N. Bruchovsky,K. Aihara, Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010): 517-527. |
[9] | [ A.M. Ideta,G. Tanaka,T. Takeuchi,K. Aihara, A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008): 593-614. |
[10] | [ H. Lepor,N.D. Shore, LHRH agonists for the treatment of prostate cancer: 2012, Reviews in Urology, 14 (2012): 1-12. |
[11] | [ Prostate cancer treatment (PDQ) -Patient Version National Cancer Institute, 2016. Available from: https://www.cancer.gov/types/prostate/patient/prostate-treatment-pdq. |
[12] | [ T. Portz,Y. Kuang,J.D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012): 1-14. |
[13] | [ M.H. Rashid,U.B. Chaudhary, Intermittent androgen deprivation therapy for prostate cancer, The Oncologist, 9 (2004): 295-301. |
[14] | [ F.G. Rick,A.V. Schally, Bench-to-bedside development of agonists and antagonists of luteinizing hormone-releasing hormone for treatment of advanced prostate cancer, Urologic Oncology: Seminars and Original Investigations, 33 (2015): 270-274. |
[15] | [ A. Sciarra,P.A. Abrahamsson,M. Brausi,M. Galsky,N. Mottet,O. Sartor,T.L.J. Tammela,F.C. da Silva, Intermittent androgen-depravation therapy in prostate cancer: a critical review focused on phase 3 trials, European Urology, 64 (2013): 722-730. |
[16] | [ L.G. Stanley, Sensitivity equation methods for parameter dependent elliptic equations, Numer. Funct. Anal. Optim., 22 (2001): 721-748. |
[17] | [ Y. Suzuki,D. Sakai,T. Nomura,Y. Hirata,K. Aihara, A new protocol for intermittent androgen suppresion therapy of prostate cancer with unstable saddle-point dynamics, J. Theor. Biol., 350 (2014): 1-16. |
[18] | [ G. Tanaka,K. Tsumoto,S. Tsuji,K. Aihara, Analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer, Physica D, 237 (2008): 2616-2627. |
[19] | [ F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd edition, Springer-Verlag, Berlin, 1996. |
[20] | [ L. Voth, The Exploration and Computations of Mathematical Models of Intermittent Treatment for Prostate Cancer, M. S. thesis, Sam Houston University, 2012. |
1. | Ephraim Agyingi, Tamas Wiandt, Sophia Maggelakis, 2016, Chapter 16, 978-3-319-30377-2, 167, 10.1007/978-3-319-30379-6_16 | |
2. | Itzel A. Avila-Castro, Angel Ramon Hernández-Martínez, Miriam Estevez, Martha Cruz, Rodrigo Esparza, Ramiro Pérez, Angel Luis Rodríguez, Thorax thermographic simulator for breast pathologies, 2017, 15, 16656423, 143, 10.1016/j.jart.2017.01.008 | |
3. | Mamta Agrawal, K. R. Pardasani, 2019, Chapter 28, 978-981-13-1902-0, 241, 10.1007/978-981-13-1903-7_28 | |
4. | Ephraim Agyingi, Tamas Wiandt, Sophia Maggelakis, 2021, Chapter 2, 978-3-030-84595-7, 5, 10.1007/978-3-030-84596-4_2 |