Global stability for the prion equation with general incidence

  • Received: 01 May 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 92D25; Secondary: 35B35, 35B40, 35Q92, 45K05.

  • We consider the so-called prion equation with the general incidence term introduced in [14], and we investigate the stability of the steady states.The method is based on the reduction technique introduced in [11].The argument combines a recent spectral gap result for the growth-fragmentation equation in weighted $L^1$ spaces and the analysis of a nonlinear system of three ordinary differential equations.

    Citation: Pierre Gabriel. Global stability for the prion equation with general incidence[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 789-801. doi: 10.3934/mbe.2015.12.789

    Related Papers:

    [1] H. T. Banks, Cammey E. Cole, Paul M. Schlosser, Hien T. Tran . Modeling and optimal regulation of erythropoiesis subject to benzene intoxication. Mathematical Biosciences and Engineering, 2004, 1(1): 15-48. doi: 10.3934/mbe.2004.1.15
    [2] Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito . Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233
    [3] Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu . Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences and Engineering, 2005, 2(2): 289-315. doi: 10.3934/mbe.2005.2.289
    [4] Yuganthi R. Liyanage, Nora Heitzman-Breen, Necibe Tuncer, Stanca M. Ciupe . Identifiability investigation of within-host models of acute virus infection. Mathematical Biosciences and Engineering, 2024, 21(10): 7394-7420. doi: 10.3934/mbe.2024325
    [5] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [6] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [7] Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd . Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences and Engineering, 2012, 9(3): 553-576. doi: 10.3934/mbe.2012.9.553
    [8] Kimberlyn Roosa, Ruiyan Luo, Gerardo Chowell . Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and Engineering, 2019, 16(5): 4299-4313. doi: 10.3934/mbe.2019214
    [9] Maria Pia Saccomani, Karl Thomaseth . Calculating all multiple parameter solutions of ODE models to avoid biological misinterpretations. Mathematical Biosciences and Engineering, 2019, 16(6): 6438-6453. doi: 10.3934/mbe.2019322
    [10] Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335
  • We consider the so-called prion equation with the general incidence term introduced in [14], and we investigate the stability of the steady states.The method is based on the reduction technique introduced in [11].The argument combines a recent spectral gap result for the growth-fragmentation equation in weighted $L^1$ spaces and the analysis of a nonlinear system of three ordinary differential equations.


    [1] Kinetic Related Models, 6 (2013), 219-243.
    [2] Comm. Appl. Ind. Math., 1 (2010), 299-308.
    [3] J. Math. Pures Appl., 96 (2011), 334-362.
    [4] J. Biol. Dyn., 4 (2010), 28-42.
    [5] Math. Biosci., 217 (2009), 88-99.
    [6] Comm. Math. Sci., 7 (2009), 839-865.
    [7] Math. Models Methods Appl. Sci., 20 (2010), 757-783.
    [8] J. Math. Anal. Appl., 324 (2006), 98-117.
    [9] Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.
    [10] Math. Comput. Modelling, 53 (2011), 1451-1456.
    [11] Commun. Math. Sci., 10 (2012), 787-820.
    [12] Appl. Math. Lett., 27 (2014), 74-78.
    [13] J. Theoret. Biol., 242 (2006), 598-606.
    [14] SIAM J. Appl. Math., 68 (2007), 154-170.
    [15] Nature, 215 (1967), 1043-1044.
    [16] Cell, 73 (1993), 1055-1058.
    [17] Commun. Math. Sci., 7 (2009), 503-510.
    [18] J. Evol. Equ., 7 (2007), 241-264.
    [19] Biophysical Chemistry, 77 (1999), 139-152.
    [20] J. Math. Pures Appl., 84 (2005), 1235-1260.
    [21] arXiv:1310.7773.
    [22] J. Differential Equations, 210 (2005), 155-177.
    [23] Science, 216 (1982), 136-144.
    [24] Dis. Cont. Dyn. Sys. Ser. B, 6 (2006), 225-235.
    [25] Nature, 437 (2005), 257-261.
    [26] J. Math. Anal. Appl., 324 (2006), 580-603.
    [27] American Mathematical Society, Providence, RI, 1995.
    [28] in Proceedings of the Sixth Mississippi State-UBA Conference on Differential Equations and Computational Simulations, 15 (2007), 387-397.
  • This article has been cited by:

    1. Shawn P. Reese, Benjamin J. Ellis, Jeffrey A. Weiss, 2013, Chapter 157, 978-3-642-36481-5, 103, 10.1007/8415_2012_157
    2. Jason M. Graham, Bruce P. Ayati, Sarah A. Holstein, James A. Martin, Luc Malaval, The Role of Osteocytes in Targeted Bone Remodeling: A Mathematical Model, 2013, 8, 1932-6203, e63884, 10.1371/journal.pone.0063884
    3. Marc D. Ryser, Kevin A. Murgas, Bone remodeling as a spatial evolutionary game, 2017, 418, 00225193, 16, 10.1016/j.jtbi.2017.01.021
    4. Bing Ji, Jie Chen, Changqing Zhen, Qing Yang, Nengwang Yu, Mathematical modelling of the role of Endo180 network in the development of metastatic bone disease in prostate cancer, 2020, 117, 00104825, 103619, 10.1016/j.compbiomed.2020.103619
    5. Ariel Camacho, Silvia Jerez, Bone metastasis treatment modeling via optimal control, 2019, 78, 0303-6812, 497, 10.1007/s00285-018-1281-3
    6. Yang Zhang, Enrico Dall’Ara, Marco Viceconti, Visakan Kadirkamanathan, Jose Manuel Garcia Aznar, A new method to monitor bone geometry changes at different spatial scales in the longitudinal in vivo μCT studies of mice bones, 2019, 14, 1932-6203, e0219404, 10.1371/journal.pone.0219404
    7. S. Jerez, B. Chen, Stability analysis of a Komarova type model for the interactions of osteoblast and osteoclast cells during bone remodeling, 2015, 264, 00255564, 29, 10.1016/j.mbs.2015.03.003
    8. Corey J. Miller, Silvia Trichilo, Edmund Pickering, Saulo Martelli, Peter Delisser, Lee B. Meakin, Peter Pivonka, Cortical Thickness Adaptive Response to Mechanical Loading Depends on Periosteal Position and Varies Linearly With Loading Magnitude, 2021, 9, 2296-4185, 10.3389/fbioe.2021.671606
    9. Carley V. Cook, Ariel M. Lighty, Brenda J. Smith, Ashlee N. Ford Versypt, A review of mathematical modeling of bone remodeling from a systems biology perspective, 2024, 4, 2674-0702, 10.3389/fsysb.2024.1368555
    10. Peter Pivonka, José Luis Calvo-Gallego, Stephan Schmidt, Javier Martínez-Reina, Advances in mechanobiological pharmacokinetic-pharmacodynamic models of osteoporosis treatment – Pathways to optimise and exploit existing therapies, 2024, 186, 87563282, 117140, 10.1016/j.bone.2024.117140
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2925) PDF downloads(495) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog