Mathematical Biosciences and Engineering, 2014, 11(6): 1357-1373. doi: 10.3934/mbe.2014.11.1357.

Primary: 92C10, 74H10; Secondary: 35C20.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A model for the nonlinear mechanism responsible for cochlear amplification

1. Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590

   

A nonlinear model for the mechanism responsible for the amplification of the sound wave in the ear is derived using the geometric and material properties of the system. The result is a nonlinear beam equation, with the nonlinearity appearing in a coefficient of the equation. Once derived, the beam problem is analyzed for various loading conditions. Based on this analysis it is seen that the mechanism is capable of producing a spatially localized gain, as required by any amplification mechanism, but it is also capable of increasing the spatial contrast in the signal.
  Figure/Table
  Supplementary
  Article Metrics

Keywords basilar membrane; Cochlear amplification; nonlinear beam.

Citation: Kimberly Fessel, Mark H. Holmes. A model for the nonlinear mechanism responsible for cochlear amplification. Mathematical Biosciences and Engineering, 2014, 11(6): 1357-1373. doi: 10.3934/mbe.2014.11.1357

References

  • 1. Physiol. Rev., 88 (2008), 173-210.
  • 2. Hearing Res., 266 (2010), 1-17.
  • 3. J. Physiol., 388 (1987), 323-347.
  • 4. J. Neurosci., 20 (2000), RC116.
  • 5. in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), Lecture Notes in Biomathematics, Springer-Verlag, New York, 1981, 369-386.
  • 6. Proc. Nat. Acad. Sci., 95 (1998), 14594-14599.
  • 7. Nature Reviews Molecular Cell Biology, 3 (2002), 104-111.
  • 8. Mech. Res. Commun., 23 (1996), 11-17.
  • 9. Hearing Res., 199 (2005), 40-56.
  • 10. J. Acoust. Soc. Amer., 81 (1987), 103-114.
  • 11. J. Acoust. Soc. Amer., 76 (1984), 767-778.
  • 12. Proc. Nat. Acad. Sci., 74 (1977), 2407-2411.
  • 13. J. Acoust. Soc. Amer., 122 (2007), 2215-2225.
  • 14. Nature, 419 (2002), 300-304.
  • 15. J. Fluid Mechanics, 106 (1981), 149-213.
  • 16. Hearing Res., 170 (2002), 190-205.
  • 17. Biophysical Journal, 102 (1996), 1237-1246.
  • 18. Proc. Natl. Acad. Sci., 97 (2006), 11751-11758.
  • 19. Emerald Group, Bingley, UK, 2008.
  • 20. JASA, 121 (2007), 2758-2773.
  • 21. Hearing Res., 22 (1986), 199-216.
  • 22. Proc. Nat. Acad. Sci., 94 (1997), 2660-2664.
  • 23. J. Acoust. Soc. Amer., 65 (1979), 1007-1018.
  • 24. J. Neurosci. Methods, 162 (2007), 187-197.
  • 25. Biophys. J., 73 (1997), 2241-2247.
  • 26. J. Mech. Mater. Struct., 2 (2007), 1449-1458.

 

This article has been cited by

  • 1. Kimberly Fessel, Mark H. Holmes, A model and analysis for the nonlinear amplification of waves in the cochlea, Mathematical Biosciences, 2018, 301, 10, 10.1016/j.mbs.2018.01.006

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Kimberly Fessel, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved