1.
|
Winfried Just, Joan Saldaña, Ying Xin,
Oscillations in epidemic models with spread of awareness,
2018,
76,
0303-6812,
1027,
10.1007/s00285-017-1166-x
|
|
2.
|
Maoxing Liu, Yuting Chang, Haiyan Wang, Benxing Li,
Dynamics of the impact of Twitter with time delay on the spread of infectious diseases,
2018,
11,
1793-5245,
1850067,
10.1142/S1793524518500675
|
|
3.
|
Naveen Sharma, Ram Singh, Rachana Pathak,
Modeling of media impact with stability analysis and optimal solution of SEIRS epidemic model,
2019,
22,
0972-0502,
1123,
10.1080/09720502.2019.1706839
|
|
4.
|
Frederik Verelst, Lander Willem, Philippe Beutels,
Behavioural change models for infectious disease transmission: a systematic review (2010–2015),
2016,
13,
1742-5689,
20160820,
10.1098/rsif.2016.0820
|
|
5.
|
Sylvie Diane Djiomba Njankou, Farai Nyabadza,
Modelling the Potential Role of Media Campaigns in Ebola Transmission Dynamics,
2017,
2017,
1687-9643,
1,
10.1155/2017/3758269
|
|
6.
|
Hai-Feng Huo, Xiang-Ming Zhang,
Complex dynamics in an alcoholism model with the impact of Twitter,
2016,
281,
00255564,
24,
10.1016/j.mbs.2016.08.009
|
|
7.
|
Sameer Kumar, Chong Xu, Nidhi Ghildayal, Charu Chandra, Muer Yang,
Social media effectiveness as a humanitarian response to mitigate influenza epidemic and COVID-19 pandemic,
2021,
0254-5330,
10.1007/s10479-021-03955-y
|
|
8.
|
Mingwang Shen, Yanni Xiao, Libin Rong,
Modeling the effect of comprehensive interventions on Ebola virus transmission,
2015,
5,
2045-2322,
10.1038/srep15818
|
|
9.
|
Alexander M. Djuricich, Janine E. Zee-Cheng,
Live tweeting in medicine: ‘Tweeting the meeting’,
2015,
27,
0954-0261,
133,
10.3109/09540261.2014.1000270
|
|
10.
|
Nicolò Gozzi, Daniela Perrotta, Daniela Paolotti, Nicola Perra, Benjamin Althouse,
Towards a data-driven characterization of behavioral changes induced by the seasonal flu,
2020,
16,
1553-7358,
e1007879,
10.1371/journal.pcbi.1007879
|
|
11.
|
Erick Oduniyi, Brad Gibbons, Myunghyun Oh, Folashade B. Agusto,
2021,
Chapter 10,
978-3-030-50825-8,
257,
10.1007/978-3-030-50826-5_10
|
|
12.
|
Hyekyung Woo, Hyeon Sung Cho, Eunyoung Shim, Jong Koo Lee, Kihwang Lee, Gilyoung Song, Youngtae Cho,
Identification of Keywords From Twitter and Web Blog Posts to Detect Influenza Epidemics in Korea,
2018,
12,
1935-7893,
352,
10.1017/dmp.2017.84
|
|
13.
|
Timothy Robin Y. Teng, Elvira P. De Lara-Tuprio, Jay Michael R. Macalalag,
2019,
2192,
0094-243X,
060021,
10.1063/1.5139167
|
|
14.
|
Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang,
Modeling and analysis of a H1N1 model with relapse and effect of Twitter,
2020,
560,
03784371,
125136,
10.1016/j.physa.2020.125136
|
|
15.
|
J. B. Shukla, Ram Naresh, Sandhya Rani Verma, Manju Agarwal,
Modeling the effect of sanitation in a human habitat to control the spread of bacterial diseases,
2020,
6,
2363-6203,
39,
10.1007/s40808-019-00653-4
|
|
16.
|
Mehrab Nazir, Iftikhar Hussain, Jian Tian, Sabahat Akram, Sidney Mangenda Tshiaba, Shahrukh Mushtaq, Muhammad Afzal Shad,
A Multidimensional Model of Public Health Approaches Against COVID-19,
2020,
17,
1660-4601,
3780,
10.3390/ijerph17113780
|
|
17.
|
Purva Grover, Arpan Kumar Kar, Gareth Davies,
“Technology enabled Health” – Insights from twitter analytics with a socio-technical perspective,
2018,
43,
02684012,
85,
10.1016/j.ijinfomgt.2018.07.003
|
|
18.
|
Nicola Perra,
Non-pharmaceutical interventions during the COVID-19 pandemic: A review,
2021,
03701573,
10.1016/j.physrep.2021.02.001
|
|
19.
|
Shoko Wakamiya, Yukiko Kawai, Eiji Aramaki,
Twitter-Based Influenza Detection After Flu Peak via Tweets With Indirect Information: Text Mining Study,
2018,
4,
2369-2960,
e65,
10.2196/publichealth.8627
|
|
20.
|
Hai-Feng Huo, Peng Yang, Hong Xiang,
Stability and bifurcation for an SEIS epidemic model with the impact of media,
2018,
490,
03784371,
702,
10.1016/j.physa.2017.08.139
|
|
21.
|
Hai-Feng Huo, Xiang-Ming Zhang,
Modeling the influence of Twitter in reducing and increasing the spread of influenza epidemics,
2016,
5,
2193-1801,
10.1186/s40064-016-1689-4
|
|
22.
|
J. Sooknanan, D. M. G. Comissiong,
Trending on Social Media: Integrating Social Media into Infectious Disease Dynamics,
2020,
82,
0092-8240,
10.1007/s11538-020-00757-4
|
|
23.
|
Joanna Sooknanan, Nicholas Mays,
Harnessing Social Media in the Modelling of Pandemics—Challenges and Opportunities,
2021,
83,
0092-8240,
10.1007/s11538-021-00895-3
|
|
24.
|
Riane Hajjami, Mustapha El Jarroudi, Aadil Lahrouz, Adel Settati, Mohamed EL Fatini, Kai Wang,
Dynamic analysis of an $ SEIR $ epidemic model with a time lag in awareness allocated funds,
2020,
0,
1553-524X,
0,
10.3934/dcdsb.2020285
|
|
25.
|
Youming Guo, Tingting Li,
Optimal control strategies for an online game addiction model with low and high risk exposure,
2020,
0,
1553-524X,
0,
10.3934/dcdsb.2020347
|
|
26.
|
Folashade B. Agusto, Eric Numfor, Karthik Srinivasan, Enahoro A. Iboi, Alexander Fulk, Jarron M. Saint Onge, A. Townsend Peterson,
Impact of public sentiments on the transmission of COVID-19 across a geographical gradient,
2023,
11,
2167-8359,
e14736,
10.7717/peerj.14736
|
|
27.
|
Yaping Wang, Lin Hu, Linfei Nie,
Dynamics of a Hybrid HIV/AIDS Model with Age-Structured, Self-Protection and Media Coverage,
2022,
11,
2227-7390,
82,
10.3390/math11010082
|
|
28.
|
Pankaj Kumar Tiwari, Rajanish Kumar Rai, Arvind Kumar Misra, Joydev Chattopadhyay,
Dynamics of Infectious Diseases: Local Versus Global Awareness,
2021,
31,
0218-1274,
2150102,
10.1142/S0218127421501029
|
|
29.
|
C. W. Chukwu, F. Nyabadza, ,
Modelling the potential role of media campaigns on the control of Listeriosis,
2021,
18,
1551-0018,
7580,
10.3934/mbe.2021375
|
|
30.
|
Ting Kang, Qimin Zhang, Qingyun Wang,
Nonlinear adaptive control of avian influenza model with slaughter, educational campaigns and treatment,
2023,
31,
2688-1594,
4346,
10.3934/era.2023222
|
|
31.
|
Zhihui Ma, Shenghua Li, Shuyan Han,
Bifurcation and optimal control for an infectious disease model with the impact of information,
2024,
17,
1793-5245,
10.1142/S1793524523500067
|
|
32.
|
Haiyan Tian, Jianmin Guo, Shugui Kang,
2023,
SIRSM Model with Media Information Influence,
979-8-3503-4584-1,
180,
10.1109/ICIS57766.2023.10210265
|
|
33.
|
Lin Hu, Linfei Nie,
Stability and Hopf Bifurcation Analysis of a Multi-Delay Vector-Borne Disease Model with Presence Awareness and Media Effect,
2023,
7,
2504-3110,
831,
10.3390/fractalfract7120831
|
|
34.
|
Makayla Preston, Alexandria Carter, Eric Numfor,
Modeling the Effects of Media Awareness on SARS-CoV-2 Transmission in Georgia,
2024,
10,
2349-5103,
10.1007/s40819-024-01759-9
|
|
35.
|
Evans Omondi, Nancy Matendechere Imbusi, Kube Ananda, Oluwatosin Babasola,
The epidemiological impact of media campaigns on the dynamics of HIV transmission model,
2024,
11,
2768-4830,
10.1080/27684830.2024.2381893
|
|
36.
|
Saduri Das, Prashant K. Srivastava, Pankaj Biswas,
The role of social media in a tuberculosis compartmental model: Exploring Hopf-bifurcation and nonlinear oscillations,
2024,
03784754,
10.1016/j.matcom.2024.11.015
|
|