Dynamics of an age-of-infection cholera model

  • Received: 01 July 2012 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 92D30; Secondary: 35B35, 35Q92.

  • A new model for the dynamics of cholera is formulated that incorporates both the infection age of infectious individuals and biological age of pathogen in the environment. The basic reproduction number is defined and proved to be a sharp threshold determining whether or not cholera dies out. Final size relations for cholera outbreaks are derived for simplified models when input and death are neglected.

    Citation: Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1335-1349. doi: 10.3934/mbe.2013.10.1335

    Related Papers:

    [1] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [2] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641
    [3] Jiazhe Lin, Rui Xu, Xiaohong Tian . Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies. Mathematical Biosciences and Engineering, 2019, 16(5): 4339-4358. doi: 10.3934/mbe.2019216
    [4] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
    [5] Fred Brauer . Age-of-infection and the final size relation. Mathematical Biosciences and Engineering, 2008, 5(4): 681-690. doi: 10.3934/mbe.2008.5.681
    [6] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [7] Chenwei Song, Rui Xu, Ning Bai, Xiaohong Tian, Jiazhe Lin . Global dynamics and optimal control of a cholera transmission model with vaccination strategy and multiple pathways. Mathematical Biosciences and Engineering, 2020, 17(4): 4210-4224. doi: 10.3934/mbe.2020233
    [8] Buyu Wen, Bing Liu, Qianqian Cui . Analysis of a stochastic SIB cholera model with saturation recovery rate and Ornstein-Uhlenbeck process. Mathematical Biosciences and Engineering, 2023, 20(7): 11644-11655. doi: 10.3934/mbe.2023517
    [9] Conrad Ratchford, Jin Wang . Modeling cholera dynamics at multiple scales: environmental evolution, between-host transmission, and within-host interaction. Mathematical Biosciences and Engineering, 2019, 16(2): 782-812. doi: 10.3934/mbe.2019037
    [10] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
  • A new model for the dynamics of cholera is formulated that incorporates both the infection age of infectious individuals and biological age of pathogen in the environment. The basic reproduction number is defined and proved to be a sharp threshold determining whether or not cholera dies out. Final size relations for cholera outbreaks are derived for simplified models when input and death are neglected.


    [1] Nonlinear Anal. Real World Appl., 12 (2011), 3483-3498.
    [2] Math. Biosci. Eng., 5 (2008), 681-690.
    [3] Second edition, Springer, New York, 2012.
    [4] Math. Biosc. Eng., 7 (2010), 1-15.
    [5] Lecture Notes in Math., Vol. 1945, Springer, Berlin, 2008.
    [6] Proc. Natl. Acad. Sci. USA, 108 (2011), 7081-7085.
    [7] CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, 1998.
    [8] Science, 330 (2010), 738-739.
    [9] PLOS Med., 3 (2006), 63-69.
    [10] Math. Biosci. Eng., 9 (2012), 297-312.
    [11] SIAM J. Appl. Math., 72 (2012), 25-38.
    [12] Math. Biosci., 155 (1999), 77-109.
    [13] Science, 323 (2009), 860-861.
    [14] Bull. Math. Biol., 68 (2006), 679-702.
    [15] Appl. Anal., 89 (2010), 1109-1140.
    [16] Appl. Math. Comput., 217 (2010), 3046-3049.
    [17] Proc. Natl. Acad. Sci. USA, 108 (2011), 8767-8772.
    [18] Math. Biosci., 234 (2010), 118-126.
    [19] Graduate Studies in Mathematics, Vol. 118, American Mathematical Society, Providence, 2011.
    [20] SIAM J. Appl. Math., 53 (1993), 1447-1479.
    [21] Bull. Math. Biol., 72 (2010), 1506-1533.
    [22] Ann. Internal Med., 154 (2011), 593-601.
    [23] Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, New York, 1985.
    [24] Weekly Epidemiological Record, 82 (2007), 273-284.
    [25] Weekly Epidemiological Record, 84 (2008), 309-324.
    [26] August 2011. Available from: http://www.who.int.
  • This article has been cited by:

    1. Xue-yong Zhou, Xiang-yun Shi, Jing-an Cui, DYNAMIC BEHAVIOR OF A DELAY CHOLERA MODEL WITH CONSTANT INFECTIOUS PERIOD, 2020, 10, 2156-907X, 598, 10.11948/20190006
    2. Suxia Zhang, Xiaxia Xu, A mathematical model for hepatitis B with infection-age structure, 2016, 21, 1531-3492, 1329, 10.3934/dcdsb.2016.21.1329
    3. Shanjing Ren, Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse, 2017, 14, 1551-0018, 1337, 10.3934/mbe.2017069
    4. Yanxia Dang, Zhipeng Qiu, Xuezhi Li, Competitive exclusion in an infection-age structured vector-host epidemic model, 2017, 14, 1551-0018, 901, 10.3934/mbe.2017048
    5. Xia Wang, Yijun Lou, Xinyu Song, Age-Structured Within-Host HIV Dynamics with Multiple Target Cells, 2017, 138, 00222526, 43, 10.1111/sapm.12135
    6. Shaoli Wang, Jianhong Wu, Libin Rong, A note on the global properties of an age-structured viral dynamic model with multiple target cell populations, 2017, 14, 1551-0018, 805, 10.3934/mbe.2017044
    7. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    8. Mingwang Shen, Yanni Xiao, Libin Rong, Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics, 2015, 263, 00255564, 37, 10.1016/j.mbs.2015.02.003
    9. Fred Brauer, A new epidemic model with indirect transmission, 2017, 11, 1751-3758, 285, 10.1080/17513758.2016.1207813
    10. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 4, 978-1-4939-9826-5, 117, 10.1007/978-1-4939-9828-9_4
    11. Jinliang Wang, Fanglin Xie, Toshikazu Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment, 2020, 80, 10075704, 104951, 10.1016/j.cnsns.2019.104951
    12. Yuming Chen, Shaofen Zou, Junyuan Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, 2016, 30, 14681218, 16, 10.1016/j.nonrwa.2015.11.001
    13. Junyuan Yang, Chairat Modnak, Jin Wang, Dynamical analysis and optimal control simulation for an age-structured cholera transmission model, 2019, 356, 00160032, 8438, 10.1016/j.jfranklin.2019.08.016
    14. Yan-Xia Dang, Juan Wang, Xue-Zhi Li, Mini Ghosh, 2020, Chapter 33, 978-981-15-0421-1, 403, 10.1007/978-981-15-0422-8_33
    15. Hongying Shu, Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, 2017, 22, 1553-524X, 1575, 10.3934/dcdsb.2017076
    16. Rui Xu, Junyuan Yang, Xiaohong Tian, Jiazhe Lin, Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection, 2019, 13, 1751-3758, 675, 10.1080/17513758.2019.1683628
    17. Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva, Global dynamics of a vector-host epidemic model with age of infection, 2017, 14, 1551-0018, 1159, 10.3934/mbe.2017060
    18. RUI XU, NING BAI, XIAOHONG TIAN, GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS WITH AGE-DEPENDENT LATENCY AND ACTIVE INFECTION, 2019, 27, 0218-3390, 503, 10.1142/S0218339019500207
    19. Jiazhe Lin, Rui Xu, Xiaohong Tian, Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, 2019, 13, 1751-3758, 69, 10.1080/17513758.2019.1570362
    20. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, A note on dynamics of an age-of-infection cholera model, 2016, 13, 1551-0018, 227, 10.3934/mbe.2016.13.227
    21. Jingjing Lu, Zhidong Teng, Yingke Li, An age-structured model for coupling within-host and between-host dynamics in environmentally-driven infectious diseases, 2020, 139, 09600779, 110024, 10.1016/j.chaos.2020.110024
    22. Yan-Xia Dang, Xue-Zhi Li, Maia Martcheva, Competitive exclusion in a multi-strain immuno-epidemiological influenza model with environmental transmission, 2016, 10, 1751-3758, 416, 10.1080/17513758.2016.1217355
    23. Jiazhe Lin, Rui Xu, Xiaohong Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, 2018, 63, 0307904X, 688, 10.1016/j.apm.2018.07.013
    24. Liming Cai, Gaoxu Fan, Chayu Yang, Jin Wang, Modeling and analyzing cholera transmission dynamics with vaccination age, 2020, 357, 00160032, 8008, 10.1016/j.jfranklin.2020.05.030
    25. Xue-Zhi Li, Junyuan Yang, Maia Martcheva, 2020, Chapter 6, 978-3-030-42495-4, 211, 10.1007/978-3-030-42496-1_6
    26. Jinliang Wang, Jing Wang, Analysis of a Reaction–Diffusion Cholera Model with Distinct Dispersal Rates in the Human Population, 2021, 33, 1040-7294, 549, 10.1007/s10884-019-09820-8
    27. Liming Cai, Necibe Tuncer, Maia Martcheva, How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria, 2017, 40, 01704214, 6424, 10.1002/mma.4466
    28. Rui Xu, Xiaohong Tian, Fengqin Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, 2017, 2017, 1687-1847, 10.1186/s13662-017-1294-z
    29. Lili Liu, Xianning Liu, Mathematical Analysis for an Age-Structured Heroin Epidemic Model, 2019, 164, 0167-8019, 193, 10.1007/s10440-018-00234-0
    30. Xueying Wang, Feng-Bin Wang, Impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environment, 2019, 480, 0022247X, 123407, 10.1016/j.jmaa.2019.123407
    31. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, 2017, 11, 1751-3758, 427, 10.1080/17513758.2016.1226436
    32. Abdennasser Chekroun, Toshikazu Kuniya, Global threshold dynamics of an infection age-structured SIR epidemic model with diffusion under the Dirichlet boundary condition, 2020, 269, 00220396, 117, 10.1016/j.jde.2020.04.046
    33. Yu Yang, Shigui Ruan, Dongmei Xiao, Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function, 2015, 12, 1551-0018, 859, 10.3934/mbe.2015.12.859
    34. Shaoli Wang, Xinyu Song, Global properties for an age-structured within-host model with Crowley–Martin functional response, 2017, 10, 1793-5245, 1750030, 10.1142/S1793524517500309
    35. Li-Ming Cai, Chairat Modnak, Jin Wang, An age-structured model for cholera control with vaccination, 2017, 299, 00963003, 127, 10.1016/j.amc.2016.11.013
    36. WEIWEI LIU, JINLIANG WANG, RAN ZHANG, Dynamics of an infection age-space structured cholera model with Neumann boundary condition, 2021, 0956-7925, 1, 10.1017/S095679252100005X
    37. Weiwei Liu, Jinliang Wang, Yuming Chen, Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020316
    38. Zhenguo Bai, Liuyue Han, A partially degenerate reaction–diffusion cholera model with temporal and spatial heterogeneity, 2022, 0003-6811, 1, 10.1080/00036811.2022.2057302
    39. Shanjing Ren, Lingling Li, Global stability mathematical analysis for virus transmission model with latent age structure, 2022, 19, 1551-0018, 3337, 10.3934/mbe.2022154
    40. Wei Yang, Jinliang Wang, Analysis of a diffusive cholera model incorporating latency and bacterial hyperinfectivity, 2021, 20, 1534-0392, 3921, 10.3934/cpaa.2021138
    41. Nurudeen Oluwasola Lasisi, Effect of public awareness, behaviours and treatment on infection-age-structured of mathematical model for HIV/AIDS dynamics, 2020, 6, 2351-5279, 103, 10.21595/mme.2020.21249
    42. Jin Wang, Mathematical Models for Cholera Dynamics—A Review, 2022, 10, 2076-2607, 2358, 10.3390/microorganisms10122358
    43. Wenjing Wu, Tianli Jiang, Weiwei Liu, Jinliang Wang, Threshold dynamics of a reaction-diffusion cholera model with seasonality and nonlocal delay, 2022, 21, 1534-0392, 3263, 10.3934/cpaa.2022099
    44. Beryl Musundi, Johannes Müller, Zhilan Feng, A Multi-Scale Model for Cholera Outbreaks, 2022, 10, 2227-7390, 3114, 10.3390/math10173114
    45. Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang, Stability and Hopf bifurcation in an age-structured SIR epidemic model with relapse, 2023, 28, 1531-3492, 1643, 10.3934/dcdsb.2022141
    46. Xin Jiang, Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates, 2021, 9, 2227-7390, 2993, 10.3390/math9232993
    47. Deccy Y. Trejos, Jose C. Valverde, Ezio Venturino, Dynamics of infectious diseases: A review of the main biological aspects and their mathematical translation, 2022, 7, 2444-8656, 1, 10.2478/amns.2021.1.00012
    48. Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang, The backward bifurcation of an age-structured cholera transmission model with saturation incidence, 2022, 19, 1551-0018, 12427, 10.3934/mbe.2022580
    49. Eleonora Messina, Mario Pezzella, Antonia Vecchio, Positive Numerical Approximation of Integro-Differential Epidemic Model, 2022, 11, 2075-1680, 69, 10.3390/axioms11020069
    50. Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang, Jingjing Lu, Dynamical properties in an SVEIR epidemic model with age‐dependent vaccination, latency, infection, and relapse, 2021, 44, 0170-4214, 12810, 10.1002/mma.7583
    51. Xin Jiang, Ran Zhang, Global dynamics on a class of age-infection structured cholera model with immigration, 2023, 14173875, 1, 10.14232/ejqtde.2023.1.6
    52. Rui Xu, Ning Bai, Spatio-temporal dynamics of an age-space structured cholera model with bacterial hyperinfectivity and imperfect vaccination, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023071
    53. Eleonora Messina, Mario Pezzella, Antonia Vecchio, A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing, 2023, 01689274, 10.1016/j.apnum.2023.04.009
    54. Xinxin Cheng, Yi Wang, Gang Huang, Dynamical analysis of an age-structured cholera transmission model on complex networks, 2024, 531, 0022247X, 127833, 10.1016/j.jmaa.2023.127833
    55. Beryl Musundi, An immuno-epidemiological model linking between-host and within-host dynamics of cholera, 2023, 20, 1551-0018, 16015, 10.3934/mbe.2023714
    56. Wei Wang, Teng Liu, Xiaoting Fan, Mathematical modelling of cholera disease with seasonality and human behavior change, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024013
    57. Xin Jiang, Ran Zhang, Age-dependent immunity effect in a cholera model with double transmission modes: Hopf bifurcation analysis, 2023, 69, 1598-5865, 4381, 10.1007/s12190-023-01933-0
    58. Adiela Chukwumela, Davies Iyai, Effect of Time Delay in the Stability Analysis of Cholera Epidemic-Endemic Disease Model, 2024, 2, 2786-7447, 281, 10.59324/ejtas.2024.2(3).24
    59. C. Hameni Nkwayep, R. Glèlè Kakaï, S. Bowong, Prediction and control of cholera outbreak: Study case of Cameroon, 2024, 9, 24680427, 892, 10.1016/j.idm.2024.04.009
    60. Bálint Máté Takács, Gabriella Svantnerné Sebestyén, István Faragó, High-order reliable numerical methods for epidemic models with non-constant recruitment rate, 2024, 01689274, 10.1016/j.apnum.2024.08.008
    61. Jianquan Li, Yuming Chen, Xiaojian Xi, Nini Xue, An analytical approach to applying the Lyapunov direct method to an epidemic model with age and stage structures, 2025, 84, 14681218, 104312, 10.1016/j.nonrwa.2024.104312
    62. Xiaoguang Li, Liming Cai, Wandi Ding, Modeling the transmission dynamics of a two-strain dengue disease with infection age, 2025, 18, 1793-5245, 10.1142/S1793524524500049
    63. Jianquan Li, Yuming Chen, Fengqin Zhang, Peijun Zhang, A novel integral inequality for stability of age-structured epidemic models, 2025, 169, 08939659, 109598, 10.1016/j.aml.2025.109598
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2518) PDF downloads(566) Cited by(60)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog