Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A simple analysis of vaccination strategies for rubella

1. Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples

We consider an SEIR epidemic model with vertical transmission introduced by Li, Smith and Wang, [23], and apply optimal control theory to assess the effects of vaccination strategies on the model dynamics. The strategy is chosen to minimize the total number of infectious individuals and the cost associated with vaccination. We derive the optimality system and solve it numerically. The theoretical findings are then used to simulate a vaccination campaign for rubella in China.
  Figure/Table
  Supplementary
  Article Metrics

Keywords vertical transmission; optimal control; Epidemic models; rubella.

Citation: Bruno Buonomo. A simple analysis of vaccination strategies for rubella. Mathematical Biosciences and Engineering, 2011, 8(3): 677-687. doi: 10.3934/mbe.2011.8.677

 

This article has been cited by

  • 1. Eleonora Messina, Bruno Buonomo, Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study, Mathematical Biosciences and Engineering, 2012, 9, 3, 539, 10.3934/mbe.2012.9.539
  • 2. Bruno Buonomo, Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions, Mathematics, 2015, 3, 4, 1241, 10.3390/math3041241
  • 3. BRUNO BUONOMO, ON THE OPTIMAL VACCINATION STRATEGIES FOR HORIZONTALLY AND VERTICALLY TRANSMITTED INFECTIOUS DISEASES, Journal of Biological Systems, 2011, 19, 02, 263, 10.1142/S0218339011003853
  • 4. Chairat Modnak, Jin Wang, Zindoga Mukandavire, Simulating optimal vaccination times during cholera outbreaks, International Journal of Biomathematics, 2014, 07, 02, 1450014, 10.1142/S1793524514500144
  • 5. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, Mathematical Biosciences, 2015, 264, 38, 10.1016/j.mbs.2015.03.006
  • 6. Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, Journal of Mathematical Biology, 2018, 76, 1-2, 379, 10.1007/s00285-017-1146-1
  • 7. Matt J. Keeling, Andrew Shattock, Optimal but unequitable prophylactic distribution of vaccine, Epidemics, 2012, 4, 2, 78, 10.1016/j.epidem.2012.03.001
  • 8. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, Acta Applicandae Mathematicae, 2014, 132, 1, 127, 10.1007/s10440-014-9894-z
  • 9. Benjamin Riche, Hélène Bricout, Marie-Laure Kürzinger, Sylvain Roche, Jean Iwaz, Jean-François Etard, René Ecochard, Modeling and predicting the long-term effects of various strategies and objectives of varicella-zoster vaccination campaigns, Expert Review of Vaccines, 2016, 15, 7, 927, 10.1080/14760584.2016.1183483
  • 10. Lingcai Kong, Jinfeng Wang, Weiguo Han, Zhidong Cao, Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model, International Journal of Environmental Research and Public Health, 2016, 13, 3, 253, 10.3390/ijerph13030253
  • 11. Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio, Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, Journal of Mathematical Biology, 2018, 10.1007/s00285-018-1303-1
  • 12. Bruno Buonomo, , Advances in Applied Mathematics, 2014, Chapter 3, 23, 10.1007/978-3-319-06923-4_3

Reader Comments

your name: *   your email: *  

Copyright Info: 2011, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved