A spatial model of tumor-host interaction: Application of chemotherapy

  • Received: 01 October 2008 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : 92C17.

  • In this paper we consider chemotherapy in a spatial model of tumor growth. The model, which is of reaction-diffusion type, takes into account the complex interactions between the tumor and surrounding stromal cells by including densities of endothelial cells and the extra-cellular matrix. When no treatment is applied the model reproduces the typical dynamics of early tumor growth. The initially avascular tumor reaches a diffusion limited size of the order of millimeters and initiates angiogenesis through the release of vascular endothelial growth factor (VEGF) secreted by hypoxic cells in the core of the tumor. This stimulates endothelial cells to migrate towards the tumor and establishes a nutrient supply sufficient for sustained invasion. To this model we apply cytostatic treatment in the form of a VEGF-inhibitor, which reduces the proliferation and chemotaxis of endothelial cells. This treatment has the capability to reduce tumor mass, but more importantly, we were able to determine that inhibition of endothelial cell proliferation is the more important of the two cellular functions targeted by the drug. Further, we considered the application of a cytotoxic drug that targets proliferating tumor cells. The drug was treated as a diffusible substance entering the tissue from the blood vessels. Our results show that depending on the characteristics of the drug it can either reduce the tumor mass significantly or in fact accelerate the growth rate of the tumor. This result seems to be due to complicated interplay between the stromal and tumor cell types and highlights the importance of considering chemotherapy in a spatial context.

    Citation: Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson. A spatial model of tumor-host interaction: Application of chemotherapy[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521

    Related Papers:

    [1] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [2] Mahya Mohammadi, M. Soltani, Cyrus Aghanajafi, Mohammad Kohandel . Investigation of the evolution of tumor-induced microvascular network under the inhibitory effect of anti-angiogenic factor, angiostatin: A mathematical study. Mathematical Biosciences and Engineering, 2023, 20(3): 5448-5480. doi: 10.3934/mbe.2023252
    [3] Cristian Morales-Rodrigo . A therapy inactivating the tumor angiogenic factors. Mathematical Biosciences and Engineering, 2013, 10(1): 185-198. doi: 10.3934/mbe.2013.10.185
    [4] Urszula Ledzewicz, Helmut Maurer, Heinz Schättler . Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences and Engineering, 2011, 8(2): 307-323. doi: 10.3934/mbe.2011.8.307
    [5] Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257
    [6] Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219
    [7] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [8] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [9] Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi . On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences and Engineering, 2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803
    [10] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
  • In this paper we consider chemotherapy in a spatial model of tumor growth. The model, which is of reaction-diffusion type, takes into account the complex interactions between the tumor and surrounding stromal cells by including densities of endothelial cells and the extra-cellular matrix. When no treatment is applied the model reproduces the typical dynamics of early tumor growth. The initially avascular tumor reaches a diffusion limited size of the order of millimeters and initiates angiogenesis through the release of vascular endothelial growth factor (VEGF) secreted by hypoxic cells in the core of the tumor. This stimulates endothelial cells to migrate towards the tumor and establishes a nutrient supply sufficient for sustained invasion. To this model we apply cytostatic treatment in the form of a VEGF-inhibitor, which reduces the proliferation and chemotaxis of endothelial cells. This treatment has the capability to reduce tumor mass, but more importantly, we were able to determine that inhibition of endothelial cell proliferation is the more important of the two cellular functions targeted by the drug. Further, we considered the application of a cytotoxic drug that targets proliferating tumor cells. The drug was treated as a diffusible substance entering the tissue from the blood vessels. Our results show that depending on the characteristics of the drug it can either reduce the tumor mass significantly or in fact accelerate the growth rate of the tumor. This result seems to be due to complicated interplay between the stromal and tumor cell types and highlights the importance of considering chemotherapy in a spatial context.


  • This article has been cited by:

    1. Sebastien Benzekry, Passing to the limit 2D–1D in a model for metastatic growth, 2012, 6, 1751-3758, 19, 10.1080/17513758.2011.568071
    2. A. V. Kolobov, M. B. Kuznetsov, Investigation of the effects of angiogenesis on tumor growth using a mathematical model, 2015, 60, 0006-3509, 449, 10.1134/S0006350915030082
    3. Eleftheria Tzamali, Rosy Favicchio, Alexandros Roniotis, Georgios Tzedakis, Giorgos Grekas, Jorge Ripoll, Kostas Marias, Giannis Zacharakis, Vangelis Sakkalis, 2013, Employing in-vivo molecular imaging in simulating and validating tumor growth, 978-1-4577-0216-7, 5533, 10.1109/EMBC.2013.6610803
    4. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T., Alireza Akbarzadeh, Experiment-based affect heuristic using fuzzy rules and Taguchi statistical method for tuning complex systems, 2021, 172, 09574174, 114638, 10.1016/j.eswa.2021.114638
    5. Alexandros Roniotis, Mariam-Eleni Oraiopoulou, Eleftheria Tzamali, Eleftherios Kontopodis, Sofie Van Cauter, Vangelis Sakkalis, Kostas Marias, A Proposed Paradigm Shift in Initializing Cancer Predictive Models with DCE-MRI Based PK Parameters: A Feasibility Study, 2015, 14s4, 1176-9351, CIN.S19339, 10.4137/CIN.S19339
    6. Sophie Bekisz, Liesbet Geris, Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications, 2020, 46, 18777503, 101198, 10.1016/j.jocs.2020.101198
    7. Zoltan Neufeld, William von Witt, Dora Lakatos, Jiaming Wang, Balazs Hegedus, Andras Czirok, Leah Edelstein-Keshet, The role of Allee effect in modelling post resection recurrence of glioblastoma, 2017, 13, 1553-7358, e1005818, 10.1371/journal.pcbi.1005818
    8. M. Sturrock, I. S. Miller, G. Kang, N. Hannis Arba’ie, A. C. O’Farrell, A. Barat, G. Marston, P. L. Coletta, A. T. Byrne, J. H. Prehn, Anti-angiogenic drug scheduling optimisation with application to colorectal cancer, 2018, 8, 2045-2322, 10.1038/s41598-018-29318-5
    9. Katarzyna A. Rejniak, Alexander R. A. Anderson, Hybrid models of tumor growth, 2011, 3, 1939-5094, 115, 10.1002/wsbm.102
    10. Andreas C. Aristotelous, Richard Durrett, Fingering in Stochastic Growth Models, 2014, 23, 1058-6458, 465, 10.1080/10586458.2014.947053
    11. Yoonseok Kam, Katarzyna A. Rejniak, Alexander R.A. Anderson, Cellular modeling of cancer invasion: Integration of in silico and in vitro approaches, 2012, 227, 00219541, 431, 10.1002/jcp.22766
    12. Jana Gevertz, Optimization of vascular-targeting drugs in a computational model of tumor growth, 2012, 85, 1539-3755, 10.1103/PhysRevE.85.041914
    13. Eleftheria Tzamali, Georgios Grekas, Konstantinos Marias, Vangelis Sakkalis, Dominik Wodarz, Exploring the Competition between Proliferative and Invasive Cancer Phenotypes in a Continuous Spatial Model, 2014, 9, 1932-6203, e103191, 10.1371/journal.pone.0103191
    14. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T, 2016, Fuzzy-CA model for an in-silico cancer cell line: A journey from simple cellular pattern to an emergent complex behavior, 978-1-5090-0626-7, 730, 10.1109/FUZZ-IEEE.2016.7737760
    15. Chieh Lo, Kartikeya Bhardwaj, Radu Marculescu, Towards cell-based therapeutics: A bio-inspired autonomous drug delivery system, 2017, 12, 18787789, 25, 10.1016/j.nancom.2017.01.006
    16. Azim Rivaz, Mahdieh Azizian, Madjid Soltani, Various Mathematical Models of Tumor Growth with Reference to Cancer Stem Cells: A Review, 2019, 43, 1028-6276, 687, 10.1007/s40995-019-00681-w
    17. Filipe C. Pedrosa, Joao C. Nereu, Joao B. R. do Val, 2017, Stochastic optimal control of systems for which control variation increases uncertainty: A contribution to the discrete time case, 978-1-5386-1645-1, 2279, 10.1109/SMC.2017.8122960
    18. Hamidreza Namazi, Vladimir V. Kulish, Albert Wong, Mathematical Modelling and Prediction of the Effect of Chemotherapy on Cancer Cells, 2015, 5, 2045-2322, 10.1038/srep13583
    19. Paola Masuzzo, Marleen Van Troys, Christophe Ampe, Lennart Martens, Taking Aim at Moving Targets in Computational Cell Migration, 2016, 26, 09628924, 88, 10.1016/j.tcb.2015.09.003
    20. Hermann B. Frieboes, Shreya Raghavan, Biana Godin, Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis, 2020, 8, 2296-4185, 10.3389/fbioe.2020.01011
    21. Naamah Bloch, David Harel, The tumor as an organ: comprehensive spatial and temporal modeling of the tumor and its microenvironment, 2016, 17, 1471-2105, 10.1186/s12859-016-1168-5
    22. Andrea Weiss, Xianting Ding, Judy R. van Beijnum, Ieong Wong, Tse J. Wong, Robert H. Berndsen, Olivier Dormond, Marchien Dallinga, Li Shen, Reinier O. Schlingemann, Roberto Pili, Chih-Ming Ho, Paul J. Dyson, Hubert van den Bergh, Arjan W. Griffioen, Patrycja Nowak-Sliwinska, Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer, 2015, 18, 0969-6970, 233, 10.1007/s10456-015-9462-9
    23. Jana L. Gevertz, Computational Modeling of Tumor Response to Vascular-Targeting Therapies—Part I: Validation, 2011, 2011, 1748-670X, 1, 10.1155/2011/830515
    24. Robert H. Berndsen, Andrea Weiss, U. Kulsoom Abdul, Tse J. Wong, Patrick Meraldi, Arjan W. Griffioen, Paul J. Dyson, Patrycja Nowak-Sliwinska, Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity, 2017, 7, 2045-2322, 10.1038/srep43005
    25. Nasibeh Rady Raz, Mohammad-R Akbarzadeh-T, 2017, Swarm fuzzy-reinforcement coordination using bloom's taxonomy of the cognitive domain, 978-1-5090-4917-2, 1, 10.1109/IFSA-SCIS.2017.8023292
    26. J.R. Branco, J.A. Ferreira, Paula de Oliveira, Mathematical modeling of efficient protocols to control glioma growth, 2014, 255, 00255564, 83, 10.1016/j.mbs.2014.07.002
    27. Philip Gerlee, Sven Nelander, Mark S. Alber, The Impact of Phenotypic Switching on Glioblastoma Growth and Invasion, 2012, 8, 1553-7358, e1002556, 10.1371/journal.pcbi.1002556
    28. Jill Gallaher, Aravind Babu, Sylvia Plevritis, Alexander R.A. Anderson, Bridging Population and Tissue Scale Tumor Dynamics: A New Paradigm for Understanding Differences in Tumor Growth and Metastatic Disease, 2014, 74, 0008-5472, 426, 10.1158/0008-5472.CAN-13-0759
    29. Eleftheria Tzamali, Giorgos Tzedakis, Kostas Marias, Giannis Zacharakis, Athanassios Zacharopoulos, Vangelis Sakkalis, 2014, Simulating cancer behavior based on in silico modeling and in vivo molecular imaging approaches: Prospects and limitations, 978-1-4799-5220-5, 251, 10.1109/IST.2014.6958483
    30. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T., Mohsen Tafaghodi, Bioinspired Nanonetworks for Targeted Cancer Drug Delivery, 2015, 14, 1536-1241, 894, 10.1109/TNB.2015.2489761
    31. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T., 2018, Autonomous Navigation of Nanomachines through Biological Motion Planning, 978-1-7281-0127-9, 349, 10.1109/ICRoM.2018.8657626
    32. Andrzej Świerniak, Marek Kimmel, Jaroslaw Smieja, Krzysztof Puszynski, Krzysztof Psiuk-Maksymowicz, 2016, Chapter 4, 978-3-319-28093-6, 85, 10.1007/978-3-319-28095-0_4
    33. Anirikh Chakrabarti, Scott Verbridge, Abraham D. Stroock, Claudia Fischbach, Jeffrey D. Varner, Multiscale Models of Breast Cancer Progression, 2012, 40, 0090-6964, 2488, 10.1007/s10439-012-0655-8
    34. Natalia L. Komarova, Dominik Wodarz, 2014, Chapter 1, 978-1-4614-8300-7, 1, 10.1007/978-1-4614-8301-4_1
    35. Renee Brady, Heiko Enderling, Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to, 2019, 81, 0092-8240, 3722, 10.1007/s11538-019-00640-x
    36. Franco Flandoli, Matti Leimbach, Mean field limit with proliferation, 2016, 21, 1531-3492, 3029, 10.3934/dcdsb.2016086
    37. M.-E. Oraiopoulou, E. Tzamali, G. Tzedakis, A. Vakis, J. Papamatheakis, V. Sakkalis, In Vitro/In Silico Study on the Role of Doubling Time Heterogeneity among Primary Glioblastoma Cell Lines, 2017, 2017, 2314-6133, 1, 10.1155/2017/8569328
    38. Richard F Spaide, PERIPHERAL AREAS OF NONPERFUSION IN TREATED CENTRAL RETINAL VEIN OCCLUSION AS IMAGED BY WIDE-FIELD FLUORESCEIN ANGIOGRAPHY, 2011, 31, 0275-004X, 829, 10.1097/IAE.0b013e31820c841e
    39. Naamah Bloch, Guy Weiss, Smadar Szekely, David Harel, Danilo Roccatano, An Interactive Tool for Animating Biology, and Its Use in Spatial and Temporal Modeling of a Cancerous Tumor and Its Microenvironment, 2015, 10, 1932-6203, e0133484, 10.1371/journal.pone.0133484
    40. Jiangping Xu, Guillermo Vilanova, Hector Gomez, Assad Anshuman Oberai, A Mathematical Model Coupling Tumor Growth and Angiogenesis, 2016, 11, 1932-6203, e0149422, 10.1371/journal.pone.0149422
    41. Pierluigi Colli, Hector Gomez, Guillermo Lorenzo, Gabriela Marinoschi, Alessandro Reali, Elisabetta Rocca, Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, 2020, 30, 0218-2025, 1253, 10.1142/S0218202520500220
    42. E. A. B. F. Lima, J. T. Oden, R. C. Almeida, A hybrid ten-species phase-field model of tumor growth, 2014, 24, 0218-2025, 2569, 10.1142/S0218202514500304
    43. Antonio Fasano, Alessandro Bertuzzi, Carmela Sinisgalli, 2014, Chapter 2, 978-1-4939-0457-0, 27, 10.1007/978-1-4939-0458-7_2
    44. Hermann B. Frieboes, Bryan R. Smith, Zhihui Wang, Masakatsu Kotsuma, Ken Ito, Armin Day, Benjamin Cahill, Colin Flinders, Shannon M. Mumenthaler, Parag Mallick, Eman Simbawa, A. S. AL-Fhaid, S. R. Mahmoud, Sanjiv S. Gambhir, Vittorio Cristini, Caterina Cinti, Predictive Modeling of Drug Response in Non-Hodgkin’s Lymphoma, 2015, 10, 1932-6203, e0129433, 10.1371/journal.pone.0129433
    45. Franco Flandoli, Marta Leocata, Cristiano Ricci, The Mathematical modeling of Cancer growth and angiogenesis by an individual based interacting system, 2023, 562, 00225193, 111432, 10.1016/j.jtbi.2023.111432
    46. Martina Conte, Christina Surulescu, Mathematical modeling of glioma invasion: acid- and vasculature mediated go-or-grow dichotomy and the influence of tissue anisotropy, 2021, 407, 00963003, 126305, 10.1016/j.amc.2021.126305
    47. Mariam-Eleni Oraiopoulou, Eleftheria Tzamali, Joseph Papamatheakis, Vangelis Sakkalis, Phenocopying Glioblastoma: A Review, 2023, 16, 1937-3333, 456, 10.1109/RBME.2021.3111744
    48. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T, Target Convergence Analysis of Cancer-Inspired Swarms for Early Disease Diagnosis and Targeted Collective Therapy, 2022, 33, 2162-237X, 2132, 10.1109/TNNLS.2021.3130207
    49. Flavien Alonzo, Aurelien A. Serandour, Mazen Saad, Simulating the behaviour of glioblastoma multiforme based on patient MRI during treatments, 2022, 84, 0303-6812, 10.1007/s00285-022-01747-x
    50. Sahar Jafari Nivlouei, Madjid Soltani, Ebrahim Shirani, Mohammad Reza Salimpour, Rui Travasso, João Carvalho, A multiscale cell‐based model of tumor growth for chemotherapy assessment and tumor‐targeted therapy through a 3D computational approach, 2022, 55, 0960-7722, 10.1111/cpr.13187
    51. Chayu Yang, Jin Wang, Modeling and Analyzing Homogeneous Tumor Growth under Virotherapy, 2023, 11, 2227-7390, 360, 10.3390/math11020360
    52. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T, 2021, Trust-based Cognitive Decision Making by Social Things - A Case Study of Cancer Treatment, 978-1-6654-4407-1, 1, 10.1109/FUZZ45933.2021.9494409
    53. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T., Swarm-Fuzzy Rule-Based Targeted Nano Delivery Using Bioinspired Nanomachines, 2019, 18, 1536-1241, 404, 10.1109/TNB.2019.2906801
    54. Soroosh Arshadi, Ahmad Reza Pishevar, Magnetic drug delivery effects on tumor growth, 2021, 27, 23529148, 100789, 10.1016/j.imu.2021.100789
    55. Nasibeh Rady Raz, Mohammad R. Akbarzadeh-T, 2021, Chapter 4, 978-3-030-47123-1, 31, 10.1007/978-3-030-47124-8_4
    56. Pierluigi Colli, Hector Gomez, Guillermo Lorenzo, Gabriela Marinoschi, Alessandro Reali, Elisabetta Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, 2021, 31, 0218-2025, 1419, 10.1142/S0218202521500299
    57. David A. Hormuth, Caleb M. Phillips, Chengyue Wu, Ernesto A. B. F. Lima, Guillermo Lorenzo, Prashant K. Jha, Angela M. Jarrett, J. Tinsley Oden, Thomas E. Yankeelov, Biologically-Based Mathematical Modeling of Tumor Vasculature and Angiogenesis via Time-Resolved Imaging Data, 2021, 13, 2072-6694, 3008, 10.3390/cancers13123008
    58. Evgeniia Lavrenteva, Constantinos Theodoropoulos, Michael Binns, Analytical Models of Intra- and Extratumoral Cell Interactions at Avascular Stage of Growth in the Presence of Targeted Chemotherapy, 2023, 10, 2306-5354, 385, 10.3390/bioengineering10030385
    59. Prakas Gopal Samy, Jeevan Kanesan, Zian Cheak Tiu, Optimization of Chemotherapy Using Hybrid Optimal Control and Swarm Intelligence, 2023, 11, 2169-3536, 28873, 10.1109/ACCESS.2023.3254210
    60. Sara Hamis, Panu Somervuo, J. Arvid Ågren, Dagim Shiferaw Tadele, Juha Kesseli, Jacob G. Scott, Matti Nykter, Philip Gerlee, Dmitri Finkelshtein, Otso Ovaskainen, Spatial cumulant models enable spatially informed treatment strategies and analysis of local interactions in cancer systems, 2023, 86, 0303-6812, 10.1007/s00285-023-01903-x
    61. Shivam Rajput, Pramod Kumar Sharma, Rishabha Malviya, Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies, 2023, 18, 25900986, 100158, 10.1016/j.medidd.2023.100158
    62. Konstantinos Tzirakis, Christos Panagiotis Papanikas, Vangelis Sakkalis, Eleftheria Tzamali, Yannis Papaharilaou, Alfonso Caiazzo, Triantafyllos Stylianopoulos, Vasileios Vavourakis, An adaptive semi‐implicit finite element solver for brain cancer progression modeling, 2023, 2040-7939, 10.1002/cnm.3734
    63. Sandesh Athni Hiremath, Christina Surulescu, Data driven modeling of pseudopalisade pattern formation, 2023, 87, 0303-6812, 10.1007/s00285-023-01933-5
    64. Nasibeh Rady Raz, Mohammad-R. Akbarzadeh-T, Saeed Setayeshi, Influence-Based Nano Fuzzy Swarm Oxygen Deficiency Detection and Therapy, 2023, 53, 2168-2216, 4994, 10.1109/TSMC.2023.3252899
    65. Guillermo Lorenzo, Angela M. Jarrett, Christian T. Meyer, Julie C. DiCarlo, John Virostko, Vito Quaranta, Darren R. Tyson, Thomas E. Yankeelov, A global sensitivity analysis of a mechanistic model of neoadjuvant chemotherapy for triple negative breast cancer constrained by in vitro and in vivo imaging data, 2023, 0177-0667, 10.1007/s00366-023-01873-0
    66. Mostafa Abbaszadeh, Mehdi Dehghan, Dunhui Xiao, Investigation of phase-field models of tumor growth based on a reduced-order meshless Galerkin method, 2023, 0177-0667, 10.1007/s00366-023-01892-x
    67. Mariam-Eleni Oraiopoulou, Eleftheria Tzamali, Stylianos E. Psycharakis, Georgios Tzedakis, Takis Makatounakis, Katina Manolitsi, Elias Drakos, Antonis F. Vakis, Giannis Zacharakis, Joseph Papamatheakis, Vangelis Sakkalis, The Temozolomide–Doxorubicin paradox in Glioblastoma in vitro–in silico preclinical drug-screening, 2024, 14, 2045-2322, 10.1038/s41598-024-53684-y
    68. Qiumei Huang, Zhonghua Qiao, Huiting Yang, Maximum bound principle and non-negativity preserving ETD schemes for a phase field model of prostate cancer growth with treatment, 2024, 426, 00457825, 116981, 10.1016/j.cma.2024.116981
    69. Guim Aguadé-Gorgorió, Alexander R.A. Anderson, Ricard Solé, Modeling tumors as complex ecosystems, 2024, 27, 25890042, 110699, 10.1016/j.isci.2024.110699
    70. Ioannis Lampropoulos, Panayotis G. Kevrekidis, Christos E. Zois, Helen Byrne, Michail Kavousanakis, Spatio-Temporal Dynamics of M1 and M2 Macrophages in a Multiphase Model of Tumor Growth, 2025, 87, 0092-8240, 10.1007/s11538-025-01466-6
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4589) PDF downloads(583) Cited by(70)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog