AIMS Mathematics, 2020, 5(6): 7234-7251. doi: 10.3934/math.2020462

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Positive periodic solution for third-order singular neutral differential equation with time-dependent delay

1 College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
2 School of Physics and Information, Henan Polytechnic University, Jiaozuo 454000, China

In this paper, we investigate a class of third-order singular neutral differential equations with time-dependent delay. Applying Krasnoselskii’s fixed point theorem, we prove the existence results of a positive periodic solution for this neutral equation.
  Figure/Table
  Supplementary
  Article Metrics

References

1. R. Agarwal, S. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Acasemic, 2000.

2. A. Ardjouni, A. Djoudi, Existence, uniqueness and positivity of solutions for a neutral nonlinear periodic differential equation, Comput. Appl. Math., 34 (2015), 17-27.

3. T. Candan, Existence of positive periodic solutions of first order neutral differential equations with variable coefficients, Appl. Math. Lett., 52 (2016), 142-148.    

4. Z. Cheng, Q. Yuan, Damped superlinear Duffing equation with strong singularity of repulsive type, J. Fixed Point Theory Appl., 22 (2020), 1-18.    

5. Z. Cheng, F. Li, Weak and strong singularities for second-order nonlinear differential equations with a linear difference operator, J. Fixed. Point Theory Appl., 21 (2019), 1-23.    

6. Z. Cheng, F. Li, S. Yao, Positive solutions for second-order neutral differential equations with time-dependent deviating arguments, Filomat, 33 (2019), 3627-3638.    

7. Z. Cheng, F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), 1-19.    

8. W. Cheung, J. Ren, W. Han, Positive periodic solution of second-order neutral functional differential equations, Nonlinear Anal., 71 (2009), 3948-3955.    

9. J. Chu, P. Torres, M. Zhang, Periodic solution of second order non-autonomous singular dynamical systems, J. Differ. Equations, 239 (2007), 196-212.    

10. J. Chu, Z. Zhou, Positive solutions for singular non-linear third-order periodic boundary value problems, Nonlinear Anal. Theor., 64 (2006), 1528-1542.    

11. B. Du, Y. Liu, I. Abbas, Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks, J. Franklin Inst., 353 (2016), 448-461.    

12. A. Fonda, R. Manásevich, F. Zanolin, Subharmonics solutions for some second order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.    

13. R. Hakl, P. Torres, On periodic solutions of second-order differential equations with attractive-repulsive singularities, J. Differ. Equations, 248 (2010), 111-126.    

14. L. Lv, Z. Cheng, Positive periodic solution to superlinear neutral differential equation with time-dependent parameter, Appl. Math. Lett., 98 (2019), 271-277.    

15. R. Ma, R. Chen, Z. He, Positive periodic solutions of second-order differential equations with weak singularities, Appl. Math. Comput., 232 (2014), 97-103.

16. J. Ren, Z. Cheng, S. Siegmund, Neutral operator and neutral differential equation, Abst. Appl. Anal., 2011 (2011), 1-22.

17. J. Ren, S. Siegmund, Y. Chen, Positive periodic solutions for third-order nonlinear differential equations, Electron. J. Differ. Eq., 66 (2011), 1-19.

18. P. Torres, Weak singularities may help periodic solutions to exist, J. Differ. Equations, 232 (2007), 277-284.    

19. D. Wang, Positive periodic solutions for a nonautonomous neutral delay prey-predator model with impulse and Hassell-Varley type functional response, P. Am. Math. Soc., 142 (2014), 623-638.

20. H. Wang, Positive periodic solutions of singular systems with a parameter, J. Differ. Equations, 249 (2010), 2986-3002.    

21. Z. Wang, T. Ma, Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities, Nonlinearity, 25 (2012), 279-307.    

22. J. Wu, Z. Wang, Two periodic solutions of second-order neutral functional differential equations, J. Math. Anal. Appl., 329 (2007), 677-689.    

23. T. Xiang, R. Yuan, Existence of periodic solutions for p-Laplacian neutral functional equation with multiple deviating arguments, Topol. Method. Nonlinear Anal., 37 (2011), 235-258.

24. Y. Xin, H. Liu, Singularity problems to fourth-order Rayleigh equation with time-dependent deviating argument, Adv. Differ. Equ., 368 (2018), 1-15.

25. Y. Xin, H. Liu, Existence of periodic solution for fourth-order generalized neutral p-Laplacian differential equation with attractive and repulsive singularities, J. Inequal. Appl., 259 (2018), 1-18.

26. S. Yao, J. Liu, Study on variable coefficients singular differential equation via constant coefficients differential equation, Bound. Value Probl., 3 (2019), 1-24.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved