The purpose of this paper is to investigate the existence and $ C^{1} $-regularity of $ \omega $-periodic mild solutions for a class of neutral evolution equation with two-constant delays in Banach space $ X $
$ \frac{d}{dt}(z(t)-cz(t-\delta))+A(z(t)-cz(t-\delta)) = f(t, \ z(t), \ z(t-\tau)), \quad t\in\mathbb{R}, $
where $ \mid c\mid < 1 $, the constants $ \tau, \ \delta > 0 $ are defined as time lags, $ A:\mathcal{D}(A)\subset X\rightarrow X $ is a sectorial operator and has compact resolvent, that is, $ -A $ generates exponentially stable, compact analytic operator semigroup $ T(t)(t\geqslant0) $, and $ f:\mathbb{R}\times X\times X\rightarrow X $ is nonlinear mapping which is $ \omega $-periodic in $ t $. By using the theory of analytic operator semigroups, fixed point theorems, and the fractional powers of the sectorial operator, we establish the existence and $ C^{1} $-regularity results of $ \omega $-periodic mild solutions for the equation for the first time when $ f $ satisfies the appropriate growth conditions. In the end, we present an example to demonstrate the applications of our main results.
Citation: Shengbin Yang, Yongxiang Li. Existence and regularity of periodic solutions for a class of neutral evolution equation with delay[J]. AIMS Mathematics, 2025, 10(7): 15370-15389. doi: 10.3934/math.2025689
The purpose of this paper is to investigate the existence and $ C^{1} $-regularity of $ \omega $-periodic mild solutions for a class of neutral evolution equation with two-constant delays in Banach space $ X $
$ \frac{d}{dt}(z(t)-cz(t-\delta))+A(z(t)-cz(t-\delta)) = f(t, \ z(t), \ z(t-\tau)), \quad t\in\mathbb{R}, $
where $ \mid c\mid < 1 $, the constants $ \tau, \ \delta > 0 $ are defined as time lags, $ A:\mathcal{D}(A)\subset X\rightarrow X $ is a sectorial operator and has compact resolvent, that is, $ -A $ generates exponentially stable, compact analytic operator semigroup $ T(t)(t\geqslant0) $, and $ f:\mathbb{R}\times X\times X\rightarrow X $ is nonlinear mapping which is $ \omega $-periodic in $ t $. By using the theory of analytic operator semigroups, fixed point theorems, and the fractional powers of the sectorial operator, we establish the existence and $ C^{1} $-regularity results of $ \omega $-periodic mild solutions for the equation for the first time when $ f $ satisfies the appropriate growth conditions. In the end, we present an example to demonstrate the applications of our main results.
| [1] | H. Amann, Periodic solutions of semilinear parabolic equations, In: L. Cesari, R. Kannan, R. Weinberger (Eds.), Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, New York: Academic Press, 1978. https://doi.org/10.1016/b978-0-12-165550-1.50007-0. |
| [2] | D. Henry, Geometric theory of semilinear parabolic equations, New York: Springer-Verlag, 1981. https://doi.org/10.1007/BFb0089647. |
| [3] | A. Pazy, Semigroup of linear operators and applications to partial differential equations, Berlin: Springer-Verlag, 1983. https://doi.org/10.1007/978-1-4612-5561-1.3 |
| [4] |
J. Wu, H. Xia, Self-sustained oscillations in a ring array of coupled lossless transmission lines, J. Differ. Equations, 124 (1996), 247–278. https://doi.org/10.1006/jdeq.1996.0009 doi: 10.1006/jdeq.1996.0009
|
| [5] |
J. Wu, H. Xia, Rotating waves in neutral partial functional-differential equations, J. Dyn. Differ. Equ., 11 (1999), 209–238. https://doi.org/10.1023/A:1021973228398 doi: 10.1023/A:1021973228398
|
| [6] | Y. Li, Positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin., 39 (1996), 666–672. |
| [7] |
C. D. Coster, P. Omari, Unstable periodic solutions of a parabolic problem in the presence of non-well-order lower and upper solutions, J. Funct. Anal., 175 (2000), 52–88. https://doi.org/10.1006/jfan.2000.3600 doi: 10.1006/jfan.2000.3600
|
| [8] | Y. Li, Q. Wei, Existence results of periodic solutions for semilinear evolution equation in Banach spaces and applications, Acta. Math. Sci. Ser., 43 (2023), 702–712. |
| [9] |
C. V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions, J. Math. Anal. Appl., 234 (1999), 695–716. https://doi.org/10.1006/jmaa.1999.6412 doi: 10.1006/jmaa.1999.6412
|
| [10] |
G. M. Lieberman, Time periodic solutions of quasilinear parabolic equations, J. Math. Anal. Appl., 264 (2001), 617–638. https://doi.org/10.1006/jmaa.2000.7145 doi: 10.1006/jmaa.2000.7145
|
| [11] | Y. Li, Existence and uniquness of positive periodic solution for abstract semi-linear evolution equations, J. Syst. Sci. Math. Sci., 25 (2005), 720–728. |
| [12] |
J. Zhu, Y. Liu, Z. Li, The existence and attractivity of time periodic solutions for evolution equations with delays, Nonlinear Anal.-Real, 9 (2008), 842–851. https://doi.org/10.1016/j.nonrwa.2007.01.004 doi: 10.1016/j.nonrwa.2007.01.004
|
| [13] | H. Gou, Y. Li, A study on asymptotically periodic behavior for evolution equations with delay in Banach spaces, Qual. Theor. Dyn. Syst., 23 (2024), 365–391. |
| [14] |
Q. Li, Y. Li, P. Chen, Existence and uniqueness of periodic solutions for parabolic equation with nonlocal delay, Kodai Math. J., 39 (2016), 276–289. https://doi.org/10.2996/kmj/1467830137 doi: 10.2996/kmj/1467830137
|
| [15] |
B. Shiri, Well-posedness of the mild solutions for incommensurate systems of delay fractional differential equations, Fractal Fract., 9 (2025), 309–324. https://doi.org/10.3390/fractalfract9020060 doi: 10.3390/fractalfract9020060
|
| [16] |
Y. Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Funct. Anal., 261 (2011), 1309–1324. https://doi.org/10.1016/j.jfa.2011.05.001 doi: 10.1016/j.jfa.2011.05.001
|
| [17] |
X. Xiang, N. U. Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal.-Theor., 18 (1992), 1063–1070. https://doi.org/10.1016/0362-546X(92)90195-K doi: 10.1016/0362-546X(92)90195-K
|
| [18] |
J. Liu, T. Naito, N. V. Minh, Bounded and periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 286 (2003), 705–712. https://doi.org/10.1016/S0022-247X(03)00512-2 doi: 10.1016/S0022-247X(03)00512-2
|
| [19] |
Q. Li, X. Wu, Existence and asymptotic behavior of square-mean S-asymptotically periodic solution for stochastic evolution equation involving delay, J. Math. Inequal., 17 (2023), 381–402. https://doi.org/10.3934/dcdss.2023067 doi: 10.3934/dcdss.2023067
|
| [20] |
R. Datko, Linear autonomous neutral differential equations in a Banach space, J. Differ. Equations, 25 (1977), 258–274. https://doi.org/10.1016/0022-0396(77)90204-2 doi: 10.1016/0022-0396(77)90204-2
|
| [21] |
M. Adimy, K. Ezzinbi, A class of linear partial neutral functional differential equations with nondense domain, J. Differ. Equations, 147 (1998), 285–332. https://doi.org/10.1006/jdeq.1998.3446 doi: 10.1006/jdeq.1998.3446
|
| [22] |
M. Adimy, H. Bouzahir, K. Ezzinbi, Existence and stability for some partial neutral functional differential equations with infinite delay, J. Math. Anal. Appl., 294 (2004), 438–461. https://doi.org/10.1016/S0022-247X(04)00150-7 doi: 10.1016/S0022-247X(04)00150-7
|
| [23] |
J. Chang, Existence of some neutral partial differential equations with infinite delay, Nonlinear Anal., 74 (2011), 1309–1324. https://doi.org/10.1016/j.na.2011.01.035 doi: 10.1016/j.na.2011.01.035
|
| [24] | J. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkc. Ekvac., 21 (1978), 11–41. |
| [25] |
K. Ezzinbi, S. Ghnimi, Existence and regularity of solutions for neutral partial functional integro differential equations, Nonlinear Anal.-Real, 11 (2011), 2335–2344. https://doi.org/10.1016/j.nonrwa.2009.07.007 doi: 10.1016/j.nonrwa.2009.07.007
|
| [26] |
P. H. A. Ngoc, H. Trinh, Stability analysis of nonlinear neutral functional differential equations, SIAM J. Control Optim., 55 (2017), 3947–3968. https://doi.org/10.1137/15M1037676 doi: 10.1137/15M1037676
|
| [27] |
X. Sun, R. Yuan, Y. Lv, Global hopf bifurcations of neutral functional differential equations with state-dependent delay, Discrete Cont. Dyn.-B, 23 (2018), 667–700. https://doi.org/10.3934/dcdsb.2018038 doi: 10.3934/dcdsb.2018038
|
| [28] |
E. Hernandez, J. Wu, D. Fernandes, Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay, Appl. Math. Opt., 81 (2020), 89–111. https://doi.org/10.1007/s00245-018-9477-x doi: 10.1007/s00245-018-9477-x
|
| [29] |
M. Babram, K. Ezzinbi, R. Benkhalti, Periodic solutions of functional-differential equations of neutral type, J. Math. Anal. Appl., 204 (1996), 898–909. https://doi.org/10.1006/jmaa.1996.0475 doi: 10.1006/jmaa.1996.0475
|
| [30] |
X. Fu, X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249–267. https://doi.org/10.1016/j.jmaa.2006.01.048 doi: 10.1016/j.jmaa.2006.01.048
|
| [31] |
X. Fu, Existence of solutions and periodic solutions for abstract neutral equations with unbounded delay, J. Math. Anal. Appl., 15 (2008), 17–35. https://doi.org/10.1016/j.amc.2004.06.117 doi: 10.1016/j.amc.2004.06.117
|
| [32] |
E. Hernandez, H. R. Henriquez, Existence results for partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998), 452–475. https://doi.org/10.1006/jmaa.1997.5875 doi: 10.1006/jmaa.1997.5875
|
| [33] |
K. Ezzinbi, B. Kyelem, S. Ouaro, Periodicity in the $\alpha$-norm for some partial functional differential equations with infinite delay, Afr. Diaspora J. Math., 15 (2013), 43–72. https://doi.org/10.1186/1687-1847-2012-85 doi: 10.1186/1687-1847-2012-85
|
| [34] |
K. Ezzinbi, B. Kyelem, S. Ouaro, Periodicity in the $\alpha$-norm for partial functional differential equations in fading memory spaces, Nonlinear Anal.-Theor., 97 (2014), 30–54. https://doi.org/10.1016/j.na.2013.10.026 doi: 10.1016/j.na.2013.10.026
|
| [35] |
J. Shen, R. Liang, Periodic solutions for a kind of second order neutral functional differential equations, Appl. Math. Comput., 190 (2007), 1394–1401. https://doi.org/10.1016/j.amc.2007.02.137 doi: 10.1016/j.amc.2007.02.137
|
| [36] |
J. Komura, Differentiability of nonlinear semigroups, J. Math. Soc. Jpn., 21 (1969), 375–402. https://doi.org/10.1007/BF02760810 doi: 10.1007/BF02760810
|