
AIMS Mathematics, 2020, 5(6): 61696182. doi: 10.3934/math.2020396.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Boundedness analysis of nonautonomous stochastic differential systems with Lévy noise and mixed delays
1 Department of Mathematics, Zhejiang International Studies University, Hangzhou 310023, PR China
2 Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, PR China
Received: , Accepted: , Published:
Keywords: stochastic differential systems; Lévy noise, mixed delays; asymptotical boundedness
Citation: Danhua He, Liguang Xu. Boundedness analysis of nonautonomous stochastic differential systems with Lévy noise and mixed delays. AIMS Mathematics, 2020, 5(6): 61696182. doi: 10.3934/math.2020396
References:
 1. X. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 1997.
 2. T. Taniguchi, K. Liu, A. Truman, Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differ. Equations, 181 (2002), 7291.
 3. D. Xu, Z. Yang, Y. Huang, Existenceuniqueness and continuation theorems for stochastic functional differential equations, J. Differ. Equations, 245 (2008), 16811703.
 4. R. Z. Has'minskii, Stochastic Stability of Differential Equations, Heidelberg: SpringerVerlag, 2012.
 5. H. Hu, L. Xu, Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations, J. Math. Anal. Appl., 466 (2018), 896926.
 6. D. Xu, Y. Huang, Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 10051023.
 7. R. Sakthivel, J. Luo, Asymptotic stability of nonlinear impulsive stochastic differential equations, Statist. Probab. Lett., 79 (2009), 12191223.
 8. R. Sakthivel, J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 16.
 9. R. Sakthivel, Y. Ren, H. Kim, Asymptotic stability of secondorder neutral stochastic differential equations, J. Math. Phys., 51 (2010), 052701.
 10. L. Xu, S. S. Ge, The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Appl. Math. Lett., 42 (2015), 2229.
 11. L. Xu, Z. Dai, D. He, Exponential ultimate boundedness of impulsive stochastic delay differential equations, Appl. Math. Lett., 85 (2018), 7076.
 12. L. Xu, Z. Dai, H. Hu, Almost sure and moment asymptotic boundedness of stochastic delay differential systems, Appl. Math. Comput., 361 (2019), 157168.
 13. L. Xu, S. S. Ge, H. Hu, Boundedness and stability analysis for impulsive stochastic differential equations driven by GBrownian motion, Int. J. Control, 92 (2019), 642652.
 14. L. Xu, H. Hu, Boundedness analysis of stochastic pantograph differential systems, Appl. Math. Lett., 111 (2021), 106630.
 15. B. Tojtovska, S. Jankovic, On a general decay stability of stochastic CohenGrossberg neural networks with timevarying delays, Appl. Math. Comput., 219 (2012), 22892302.
 16. A. Rathinasamy, J. Narayanasamy, Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks, Appl. Math. Comput., 348 (2019), 126152.
 17. O. M. Otunuga, Closedform probability distribution of number of infections at a given time in a stochastic SIS epidemic model, Heliyon, 5 (2019), e02499.
 18. A. Raza, M. Rafiq, D. Baleanu, et al. Competitive numerical analysis for stochastic HIV/AIDS epidemic model in a twosex population, IET syst. biol., 13 (2019), 305315.
 19. D. He, L. Xu, Globally impulsive asymptotical synchronization of delayed chaotic systems with stochastic perturbation, Rocky MT. J. Math., 42 (2012), 617632.
 20. J. Zhao, Adaptive QS synchronization between coupled chaotic systems with stochastic perturbation and delay, Appl. Math. Model., 36 (2012), 33123319.
 21. R. Sakthivel, T. Saravanakumar, B. Kaviarasan, et al., Dissipativity based repetitive control for switched stochastic dynamical systems, Appl. Math. Comput., 291 (2016), 340353.
 22. L. Xu, D. He, Mean square exponential stability analysis of impulsive stochastic switched systems with mixed delays, Comput. Math. Appl., 62 (2011), 109117.
 23. L. Liu, F. Deng, pth moment exponential stability of highly nonlinear neutral pantograph stochastic differential equations driven by Lévy noise, Appl. Math. Lett., 86 (2018), 313319.
 24. Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Syst. Control Let., 118 (2018), 6268.
 25. Y. Xu, B. Pei, G. Guo, Existence and stability of solutions to nonLipschitz stochastic differential equations driven by Lévy noise, Appl. Math. Comput., 263 (2015), 398409.
 26. J. Yang, X. Liu, X. Liu, Stability of stochastic functional differential systems with semiMarkovian switching and Lévy noise by functional Itô's formula and its applications, J. Frankl. Inst., 357 (2020), 44584485.
 27. D. Applebaum, M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab. 46 (2009), 11161129.
 28. D. He, L. Xu, Boundedness analysis of stochastic integrodifferential systems with Lévy noise, J. Taibah Univ. Sci., 14 (2020), 8793.
 29. E. Beckenbach, R. Bellman, Inequalities, New York: SpringerVerlag, 1961.
 30. X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, London: Imperial College Press, 2006.
 31. Y. Miyahara, Ultimate boundedness of the systems governed by stochastic differential equations, Nagoya Math. J., 47 (1972), 111144.
 32. H. Ahmad, A. R. Seadawy, T. A. Khan, et al. Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, J. Taibah. Univ. Sci., 14 (2020), 346358.
 33. S. Peszat, J. Zabczyk, Stochastic Partial Differential Equations with Lévy NoiseEvolution Equation Approach, Cambridge: Cambridge Univ Press, 2009.
 34. L. Xu, S. S. Ge, Asymptotic behavior analysis of complexvalued impulsive differential systems with timevarying delays, Nonlinear Anal.: Hybrid Syst., 27 (2018), 1328.
 35. L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of nonautonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000.
 36. S. Ma, Y. Kang, Periodic averaging method for impulsive stochastic differential equations with Lévy noise, Appl. Math. Lett., 93 (2019), 9197.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *