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1. Introduction

Since the great mathematician Itd initiated and developed his stochastic calculus, the theory of
stochastic differential systems has been developed rapidly. At present, stochastic differential systems
have been used in many fields, such as mechanics of materials, economic electrical, finance, biology,
neural networks, power systems, control engineering and social sciences. A lot of significant results
on the theory and application of many kinds of stochastic differential systems have been obtained, for
example, the existence-uniqueness, the periodicity, the stability and the boundedness of the solution
have been discussed in [1-14], respectively; and the applications of stochastic differential systems
in neural networks, epidemic models, chaotic systems and switched systems have been discussed in
[15-22], respectively.

Needs to be emphasized that the stochastic differential systems are mainly limited to the case of
Gaussian noise in the literature mentioned above. However, many practical system often suffers from
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sudden environmental perturbations which are unsuitable to be described by Gaussian noise, such as
harvesting, earthquakes and hurricanes. Fortunately, as an important non-Gaussian noise, Lévy noise
can be used to perfectly describe these phenomena. Recently, some interesting studies have been
devoted to stochastic differential systems with Lévy noise [23-27]. These studies mainly focus on the
stability of the solution. But there is seldom study focusing on the boundedness of the solution [28].

Based on the above statement, the present article aims to discuss the boundedness issue for
non-autonomous stochastic differential systems with Lévy noise and mixed delays. Sufficient
conditions of the pth moment globally asymptotical boundedness are obtained by combining the
Lyapunov function methods with the inequality techniques. The main contributions of the present
research are as follows: (i) both Lévy noises and mixed delays are taken into account for
non-autonomous stochastic differential systems; (ii) several sufficient conditions on the asymptotical
boundedness are presented for the considered model using the Lyapunov technique; (iii) attracting
sets along with the convergence rates of the model are also given.

Notations:
+ = [O’ OO)
9:{lo = [t()’ OO)

a A b : the minimum of ¢ and b.

Amin(A) : the smallest eigenvalue of a symmetric matrix A.

Amax(A) : the largest eigenvalue of a symmetric matrix A.

|u| : the Euclidean norm of a vector u.

(Q, .7, P) : the complete probability space with a filtration {.Z,} 0.

w(t) = (W (D), ..., wu(1)T : the m-dimensional Brownian motion defined on (Q, .%, P).

CI[-7,0],R%] : the space of continuous R?-valued functions ¢ defined on [—v, 0] with the norm
Bl = SUP_,cgeq B(O).

E[£] : the expectation for a stochastic process &.

C’%O [[-V,0], R9] : the family of bounded ¥:,-measurable, C[[-v, 0], R?]-valued random variables ¢

such that E|¢|) < oo.
C>'(RYxR,,,R,) : the family of all nonnegative functions W(u, t) from R? x R,, to R, which which

INE
are continuously twice differentiable in u € R? and once differentiable in t € R,.

2. Preliminaries

Consider the non-autonomous stochastic differential systems with Lévy noise and mixed delays

du(t) = X(u(t), u(t” —v), ftiv a(t — Yu(t)de, t)dt
+Y (u(t), u(t™ —v), ftiv a(t — Yu()de, Hdw(t)
+ e Hu(),u(t —v), ftiv a(t — Yu@)du, t, §)Odt, dg) (2.1)

+ s I(u(@ ), u(t —v), ftiv a(t — Ou(t)de, t,¢)0(dt, dg), t >ty > 0,
u(ty + 60) = ¢(0),—v < 6 <0,

where the initial value ¢(0) € Cb [[ v, 0], R, @ : R — R is a continuous function, u(t™) = limgy, u(6),
X:RIXRIXRIXR,, - R Y ERdxiRdxiRdxiR,o — RPmH T RIXRIXRIX R, xR — RY, the
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constant ¢ € (0, co] represents the maximum allowable jump size, O(:, -) represents a Poisson random
measure defined on R, X (R? — {0}) with compensator O(-,-) and intensity measure v. Suppose that
O(., ) is independent of w and v represents a Iévy measure such that

O(dt, ds) = O(dt, d¢) - v(ds)dt, f (Is1” A Dv(dg) < 0.
RI\{0}

The notation (w, ®) is often referred to as the Lévy noise.

Now let us recall the definition of the operator LW (one may refer to [24]).
If W e C*'(RY x R,,,R,), define an operator LW from R x R, to R by

LW(u,t) =Wi(u,t) + W,(u, ) X + %trac(MTWW(u, NY)

+ f (Wu+H,t)—Wu,t) — HW,(u, )]v(ds)
Is1<c

+ f [W(u + 1, 1) — W, H]v(ds), (2.2)
1=
where X, VY, H and I are the functions in model (2.1), and
oW(u,t oW(u,t oW(u,t PW(u,t
Wity = 20Dy g = QHD D)y = ED,
ot ouy Ouy Ouju

Lemma 2.1.([29]). Fora, >0, by > 0and Y;_, by = 1,

ﬁ ar < Z biay. (2.3)
k=1

k=1

Definition 2.2. Model (2.1) is said to be pth moment globally asymptotically bounded (p-GAB) if
there exist a positive constant 3, such that for V ¢ € Cl; [[-v, 0], R9],
0]

lim sup E|x(¢; tg, )P < 30, p = 2,1 > 1.
1—00

When p = 2, it is usually said to be GAB in mean square.

Definition 2.3. Model (2.1) is said to be pth moment globally exponentially ultimately bounded (p-
GEUB)) if there exist positive constants A, 3; and 3, such that for V ¢ € C‘; [[-v, 0], RY],
0]

E|x(1; 10, )" < 31 Elglre ™™ + 30, p 2 2,1 > 19,

When p = 2, it is usually said to be GEUB in mean square.

Remark 2.4. The above definitions are very important to stochastic systems. For more detail on these
definitions, one may refer to [30,31].
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3. Asymptotical boundedness

In this section, several sufficient conditions on the asymptotical boundedness will be presented for
the model (2.1) using the Lyapunov technique.

Theorem 3.1. Let 1(s) be a continuous function and W(u, t) € C*'(RXR,,, R.). If there exist constants
p22,@>00>0,9%>0i=1,2,..5) and ys > 0 such that for all (u,t) € R X R,
0]

Yilul” < W(u,t) < yolul?; (3.1
(if)
LW(u,t) < a(O)[—ysWu(), 1) + yaWu(t —v),1) +ys f ()W (u(t - s),)ds + ], (3.2)
0

where @(t) is a positive integrable function satisfying @(t + v) < ow()@(v), sup,s,, ft Z_T w(s)ds < @

and lim,_, ft : w(s)ds = ooy

(iii)
VY3 > 072y @(v) + 72ys f n(s)w(s)ds. (3.3)
0

Then model (2.1) is p-GAB, and every solution of model (2.1) will eventually converge to the compact
set defined by

S = {5 € Cz. [[-v, 01, RIEE < %} (3.4)

1

where the positive constant A is defined as

Y2d —y1ys + 97’27473(1/)6/“% + 0Y2Y5 f U(S)W(S)eﬁsds <0. (3.5)
0

Proof. Let m be a positive number and define the stopping time w,, = inf{t > 1y : |u(t)| > m}. Applying
the generalized It6 formula to W(u, t) yields

TAUm
o TR e A ), 1A ) — Wlto), 10)

t AL ‘
- f o T OW W), ) + LWW(), HdL

fo

£ Afdm ‘ !
+ f o T TW (D), DY W), u(l — V), f a({ = s)u(s)ds, O)dw ()
+ A + (), (3.6)

t/\ﬂm (
A() = f f e o T IW ()
fo Isl<c
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¢
+ Hw({), u(d™ —v), a(d = u(s)ds,{,$),{)

{-v
- Wu({),{)1OdL, ds) (3.7

Y1) = f ymf b T [ )
to ls>c

¢
+ 1(u(), (™ - ), a({ — su(s)ds, {,6),{7)

{-v

- Wu(¢),{)10(d¢, ds) (3.8)

and

are two martingales satisfying A(#y) = T'(ty) = 0. One therefore has that
B(eth ™ T WA )t A i) = Witto),10))
b A fr[ w(o)do
=E e [AT(OW(u(), ) + LW (), HdL|. (3.9)
0]
This together with the conditions (i) and (i7) yields that

E (e/l I O e A ), A ,um))

<yaEOE E( fﬂ b T Ly A OO + DOy + yayalu = I
+ fo yaysnC — s)Pds + m]dg)

<Y:Elpl” + (724 = y173)E ( f R ”’(")"”w<4>|u<z>|"d§)
+y27iE ( f AR Otz - s>|Pd§)

+E(f " e f yaysnMl - s)l”dsdf) I VIR CRT)
o 0

On the other hand,
5 (f AR Ot - s>|Pd§) <om(1e'°E (f o 'pdg)
+ %(e”” — DE|g|” (3.11)
and

t/\:um { vV
E( f o o) f 7275n(S)|u(§—S)I”dsd§)
fo 0
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At A ’Zw(O')dzT
E( [ yaysnes) f M w(g)m(g—s)v’dgds)
o

fl
i4 AV {+s

E( f Yaysn(s) f o E’(")""w(ws)|u(§)|f’d§)ds))
0 to—s

il

<E[ | vaysu(s)e'( f T Al s)|u(§)|f’d§)ds>)
- E( fo yaynsX f BT T s)|u(4)|f’d4)ds>)

SE( fo yaysEE( f R “(”)"“gw@)|u<§>|Pd4)ds>)
- E( fo st f PR e s>|u<4>|Pd4>ds))

” A6 ) [ oo
<(0v27s f n(s)@(s)e ds)E( f et w(om(ov’do)
0

fo

4 1 R
+ f 727’577(S)(Z(€w — D)ds)E|l¢l’ (3.12)
0
Substituting (3.11) and (3.12) into (3.10) yields
A [ w(o)do
Ele o W(t A i, u(t A 1))

3 g A Tk ’[wcr o
<P Bl + (72 = Y173 + 0Y274€"T + 07275 f ()@ (5)e 7 ds)E ( f ¢ 71 W(é)lu(é)lpdé)
0

fo

+ (v +ys f n(s)ds)%(e“" — DEIgI + %(e‘ffo Me@dr ) (3.13)
0

Noting y1y3 > 0y2yYs@w (V) + 0y2Ys fov n(s)w(s)ds, there is a positive scalar A satisfying the inequality
(3.5). Letting n — oo yields

E(e”«? STy u(r), t)) < y2EIBP + (ya + v5 f M) 2 e = DEWI + Lo b 7O 1)
0
(3.14)

Using the condition (i) and the relation (3.14), we then have

1 Y % A [ @w(o)do
Bl < 221+ ~(ys + s f n(s)ds) (e — DIEglre " Jo ™7 4 Lo (3.15)
Y1 A 0 y1d

The proof is therefore completed. O

Assumption 3.1. There exist functions €(¢)(i = 1,2,...,12), constants p > 2, 0 > 0, 5 >0, &l =
1,2,...,12) and a symmetric positive definite matrix Q such that

() u'QX+ %trac(yTQy) <a(Ou' Qu+ e(OHu’ (t — v)Qu(t — v)
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+ &(1) fy a(s)u’ (t — $)Qu(t — s)ds + e(t); (3.16)
0
(i) QY| < &) Qu)* + &)W’ (t — v)Qu(t — v))*
+ &(1) fv a(s)((uT(t — )Qu(t — s)))zds + &(1); (3.17)
0
(iii) f [(u+H)'Qu+ H))? — " Qu)°> — pu" Qu)* ' u" QHvdu
lsl<c

< (U’ Qu)? + €U (t = V)Qu(t — v))*

+ () f " a(s)W’ (t — $)Qu(t — $))2ds + e (D); (3.18)
0
(iv) [((u+D"Qu+1)? — " Qu)? vdu
[gl=c
< e Qu)* + €N (t = V)Qu(t - v))*
+ €5(1) fy a/(s)(uT(t — 5)Qu(t — s))gds + €16(2); (3.19)
0
M i @) 93 > 8 (A @Q)? 746(0) + (Aan( Q) 5 fo a(5)5(s)ds; (3.20)
Vi) Ye=2&+2(p—2)& + €+ €6 > 0; (3.21)
(vii) €(t) < €0(1). (3.22)

where 6(7) is a positive integrable function satisfying 6(7 + v) < 06(£)6(v),sup,,,, ft iv 8(s)ds < & and
lim, e ft: 5(s)ds = oo,

§3= = [pé + (& + &)(p — 2+ p(5 — D&+ (p = D5 = 2)(& + &) + & + &
+@(p -2+ (p-2(& -2)) fo " a(s)ds)] > 0.
Y4 =26 +2(p—2)éc + €10+ €14 >0 (3.23)
and
Vs =2&+2(p—2)& + &1 + &5 >0, (3.24)

Theorem 3.2. If Assumption 3.1 holds, then model (2.1) is p-GAB, and every solution of model (2.1)
will eventually converge to the compact set defined by

G = b —,O,fRd E P_Lj}’ 3.25
{fecﬁo[[ W OLRIBIY, < —— -2

where the positive constant A is defined as
(/lmax(Q))g A- (/lmm(Q))g /)\/3 + é (/lmax(Q))g /)\/45(‘/)6/{8

+ (Dan(Q))? 595 f ' a(8)6(H)eds < 0. (3.26)
0
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Proof. Defined the function W(u, t) € C*'(R? x R,,,R,) by
W(u(t), 1) = ! (HQu(1)*.
Clearly, one has
(Anin @)? Elul” < BW(u(1),1) < (Aan(Q)* Elul”.
Computing LW (u, t) by the conditions (3.16)—(3.19) yields
LW(u,1) :p(uTQu)g_l[uTQX + %trac(MTQM)] + p(g - 1)(uTQu)g_2|uTQy|2

+ [(u+ H)'Qu+ H)* — (" Qu)* — p(u"Qu)* ' u" QHvdu

lsl<c

. [(u+ DT Qu+ 1)* — (u” Qu)* Ivdu
S(pel(gt)_ + p(g — Des()) " Qu)? + per(n)(u” Qu)> ™' u” (t — v)Qu(t — v)

+ pe(t) f ' a(s)(u" Qu) " u” (1 — )Qu(t — s)dss

+ 64(z)p(u0TQu)’z’-1 + p(g — Des() " Qu) 22U (1 — v)Qut — v))?

+ p(% - De(0) fo V a()(" Qu)>2((u” (1 — $)Quit — 5)))*ds

+ Eg(t)p(g — )" Qu)> 7% + (eo(1) + €13(0))(u” Qu)*

+ (e10(t) + €4’ (1 = V)Qu(t — v))*

@)+ ) [ a6 1= 5)Qutt = 50 ds + (end) + ea()
Using Lemma 2.1 and (3.29) produce

LW(u, 1) <(pé + p(g — D)o’ Qu)* + &(p — 2)5(0)(u” Qu)®

+ 28600 (t = VQu(t — v)* + &(p — 2)6(1) f ' a(s)(u" Qu)?ds
0

+2&6(1) f ' a(s)W" (1 — $)Qu(t — 5))2ds + &(p — 2)0) (U Qu)? + 2&,6(t)
0

+ (g — 1)(p — D& Qu)* + 2(p — 2)&8(1)(u” (t — v)Qu(t — v)))*
+ (g = D(p - H&d(1) f a(s)(u" Qu)*ds
0

+ 2(p — 2)&6(1) fv a(s)((u! (t — $)Qu(t — s)))gds
0

+ @(% —1)(p — DO Qu)E + &Q2p — D) + (& + &3)6(0)(u’ Qu)*

(3.27)

(3.28)

(3.29)

AIMS Mathematics Volume 5, Issue 6, 6169-6182.
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+ (810 + &5 (1 = v)Qu(t — v))*

+ (&1 + &5)0(7) fv ()" (t = HQut = $))7ds + (&2 + &16)0(7)
0
=0(D[=y3W(u®), 1) + YaWu(t = v), 1) + ¥s f a(s)W(u(r - s),0)ds + s]. (3.30)
0

By the continuity and the condition (v), there exists a positive scalar A satisfying (3.26). Therefore, it
follows from (3.28), (3.30) and Theorem 3.1 that

Elu()? 5%[1 N %6’4 Y fo‘v (s)ds)(e® — 1)]E|¢|pe—ift; (o)der
Ve

—_— 3.31
T m(@)51 oy

where the positive scalar A is determined by (3.26). The proof is therefore completed. O

From the results obtained above, we have the following corollaries immediately.
Corollary 3.3. Under assumptions of Theorem 3.1. If w(t) = 1, then model (2.1) is p-GEUB.
Corollary 3.4. Under Assumption 3.1. If 5(t) = 1, then model (2.1) is p-GEUB.

Corollary 3.5. Under assumptions of Theorem 3.1. If ys = O, then model (2.1) is pth moment globally
asymptotically stable (p-GAS).

Corollary 3.6. Under Assumption 3.1. if €& = é& = €5 = €14 = 0, then model (2.1) is p-GAS.

Remark 3.7. The boundedness of Levy driven non-autonomous stochastic differential systems with
infinite distributed delays have been discussed in [28]. One can find that the results in [28] are
invalid for model (2.1) since model (2.1) is a mixed delayed system. Even for the case where only
distributed delays are considered, our conditions are looser than those in [28] since w(t) # 1 and
o0(t) £ 1 in our conditions.

Remark 3.8. Compared with ordinary differential systems, partial differential systems have more
wide application. Up to now, various partial differential systems have been extensively
discussed [32].  Recently, Lévy driven partial differential systems have also aroused many
researchers’ great interest [33]. But the boundedness issue of Lévy driven partial differential systems
is still a challenge. We will discuss it in the future work.

Remark 3.9. Although the condition (3.2) is relaxed enough for model (2.1), it is harsh on certain
types of systems such as the Cohen-Grossberg neural networks since w(t) is dependent of x(#) in
Cohen-Grossberg neural networks. How to improve the condition (3.2) so that it is effective for
Cohen-Grossberg neural networks is still a challenge.
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Remark 3.10. The obtained results can be applied to the boundedness analysis for some real world
systems such as capital asset pricing models, DC motor models and population systems. Such
applications will be addressed in the future work.

Remark 3.11. It is well-known that, impulsive effects are unavoidable in many real systems, which
can affect the boundedness of the systems. In recent years, various impulsive systems, such as
impulsive complex-valued systems [34], impulsive fractional systems [35], impulsive stochastic
systems [11], have been studied. More recently, impulsive effects have been considered in Lévy
driven stochastic differential systems [36]. Therefore, it is necessary to extend the obtained results to
the impulsive case. Further research is needed for such extension which will be discussed in the future
work.

4. Illustrative example

Example 4.1. Consider the following 1-D stochastic differential systems with Lévy noise and mixed
delays

du(t) =2 + cos )(=19u(r) + 2u(t — 1) + f e Iu(s)ds + 3)dt
t—1

+ (2 + cos O V3u(t) + u(t — 1)]dw(t)
+ f V2 + cost f e Iu(s)ds®dt, dg)
lsl<1 t—1

!
+ f 22 + cost f e y(s)dsOdt, dg), t > 0, 4.1)

ls]>1 -1

with the Lévy measure v satisfing v(dg) = IfIS;IZ'
Taking W(u, t) = u?, one has
1
W, (1, u()X < (2 + cos H)[-30u*(r) + 2u*(t — 1) + f e ut(t — s)ds + 3], 4.2)
0
1
5Wm,(t, u())Y? < (2 + cos H[6u*(1) + u*(t — 1)), (4.3)
(Wu+ H,t) — W(u,t)-HW,(u, 1)]v(ds)
lsl<1

!
= [(u+ V2 +cost f e Iu(s)ds)? — u?
t—1

lgl<1
! . dg
—2V2 +costu f e y(s)ds)
-1 1+ |S‘|2
! , dg
- [ Vrveest [ a1
lgl<1 -1 1+ g

AIMS Mathematics Volume 5, Issue 6, 6169-6182.
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1
sg(z + cos 1) f et — s)ds, (4.4)
0

f (Wt,u+1)— W(u,t)]v(ds)
Is1>1

= f [(u(t) + 2 V2 + cost f eu(9)ds)? — uv(ds)
[s]>1 -1

1
< (2 +cosB)[mu® + 3n f e Ut — $)ds). 4.5)
0
Hence

1
LW(t,u(t)) =2 + cos )[-32u*(F) + 2u*(t — 1) + f e 1kt — $)ds + 3]
0

+6(2 + cos (1) + (2 + cos Hu*(t — 1)

1 1
+ g f e Ut (t — s)ds + mu® + 37Tf e Ukt — s)ds
0 0

1
<(2 +cos H[(=26 + M (1) + 2u*(t — 1) + (1 + 77”) f e Ukt — s)ds + 31, t > ty. (4.6)
0

The conditions (i) and (ii) of Theorem 3.1 can be easily verified by choosing y; =y, = 1,y3 =26 —m,
Ve =2,y =1+ 77”, Ys = 3, n(s) = e, w(t) = 2+ cost, 0 = 1 and p = 2. On the other hand, the
condition (ii7) is also satisfied by

v 7 1
0Y2Y4@ (V) + V2Vs f n(s)w(s)ds =2(2+cos 1)+ (1 + Eﬂ)f 3e3ds
0 0
7
<7+7ﬂ<y1y3 =26 - .
In this example, one can take 4 = 0.05 which satisfies the relation (3.5). Therefore, by Theorem 3.1,

model (4.1) is GAB in mean square, and every solution of model (4.1) will eventually converge to the
compact set defined by

S = {¢ € Cl, [[-v, 01, RNELT, < yyl—ﬁﬂ = 60). 4.7)

5. Conclusions

This article has studied the boundedness issue for non-autonomous stochastic differential systems
with Lévy noise and mixed delays. Sufficient conditions of the pth moment globally asymptotical
boundedness have been obtained by combining the Lyapunov function approach with the inequality
technique. The presented results have been demonstrated by an illustrative example. In the future, we
will discuss the problems mentioned in Remarks 3.8-3.11.
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