AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators

1 School of Science, Huzhou University, Huzhou 313000, P. R. China
2 Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
3 Department of Mathematics, COMSATS University, Islamabad 44000, Pakistan
4 Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China
5 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, P. R. China

In the article, we introduce the concept of the exponentially $tgs$-convex function and discover two new conformable fractional integral identities concerning the first-order differentiable convex mappings. By using these identities, we establish several new right-sided Hermite-Hadamard type inequalities for the exponentially $tgs$-convex functions via conformable fractional integrals. Our outcomes for conformable fractional integral operators are also applied to some special means.
  Article Metrics


1. S. Kumar, R. Kumar, C. Cattani, et al. Chaotic behaviour of fractional predator-prey dynamical system, Chaos Solutons Fractals, 135 (2020), 1-12.

2. M. A. Akinlar, F. Tchier, M. Inc, Chaos control and solutions of fractional-order Malkus waterwheel model, Chaos Solitons Fractals, 135 (2020), 1-8.

3. Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030.    

4. S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32.    

5. S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629-2645.    

6. S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20.    

7. S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15.    

8. A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.

9. S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1-18.

10. S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.

11. S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18.    

12. M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10.

13. D. Baleanu, M. Jleli, S. Kumar, et al. A fractional derivative with two singular kernels and application to a heat conduction problem, Advs. Differ. Equ., 2020 (2020), 1-19.    

14. J. Singh, D. Kumar, S. Kumar, An efficient computational method for local fractional transport equation occurring in fractal porous media, Comput. Appl. Math., 39 ((2020), 1-10.

15. S. Kumar, A. Kumar, Z. Odibat, et al. A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow, AIMS Math., 5 (2020), 3035-3055.    

16. R. Kumar, S. Kumar, J. Singh, et al. A comparative study for fractional chemical kinetics and carbon dioxide Co2 absorbed into phenyl glycidyl ether problems, AIMS Math., 5 (2020), 3201-3222.    

17. M. Inc, A. Yusuf, A. I. Aliyu, et al. Dark and singular optical solitons for the conformable space-time nonlinear Schrödinger equation with Kerr and power law onlinearity, Optik, 162 (2018), 65-75.    

18. Z. Korpinar, M. Inc, Numerical simulations for fractional variation of (1 + 1)-dimensional Biswas-Milovic equation, Optik, 166(218), 77-85.

19. P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 1-11.

20. T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14.    

21. I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.

22. M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124.    

23. S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546.    

24. M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14.    

25. T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528.    

26. M. U. Awan, N. Akhtar, A. Kashuri, et. al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680.    

27. S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10.    

28. R. Khalil, M. A. Horani, A. Yousaf, et al. New definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.    

29. S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587.    

30. M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945.    

31. T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.

32. Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.

33. M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21.

34. M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271.

35. M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mt. J. Math., 46 (2016), 679-691.    

36. M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9.

37. W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12.    

38. M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33.    

39. M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12.    

40. M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20.    

41. S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20.

42. S. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1-66.    

43. M. Avriel, r-convex functions, Math. Programming, 2 (1972), 309-323.    

44. J. Jakšetić, J. Pečarić, Exponential convexity method, J. Convex Anal., 20 (2013), 181-197.

45. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.    

46. F. Jarad, E. Uǧurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16.    

47. M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalitie for exponentially convex function, Appl. Math. Inf. Sci., 12 (2018), 405-409.    

48. Y. M. Chu, Y. F. Qiu, M. K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integral Transforms Spec. Funct., 23 (2012), 521-527.    

49. G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833-837.

50. M. K. Wang, Y. M. Chu, Y. F. Qiu, et al. An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887-890.    

51. H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13.    

52. B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10.    

53. W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166.    

54. W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12.    

55. W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13.    

56. W. M. Qian, X. H. Zhang, Y. M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121-127.

57. Y. M. Chu, M. K. Wang, Optimal Lehmer mean bounds for the Toader mean, Results Math., 61 (2012), 223-229.    

58. Y. M. Chu, M. K. Wang, S. L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 41-51.    

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved