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1. Introduction

On different time ranges, fractional calculus has a great impact due to a diversity of applications
that have contributed to several fields of technical sciences and engineering [1-12]. One of the
principal options behind the popularity of the area is that fractional-order differentiations and
integrations are more beneficial tools in expressing real-world matters than the integer-order ones.
Various studies in the literature, on distinct fractional operators such as the classical
Riemann-Liouville, Caputo, Katugamploa, Hadamard, and Marchaud versions have shown versatility
in modeling and control applications across various disciplines. However, such forms of fractional
derivatives may not be able to explain the dynamic performance accurately, hence, many authors are
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found to be sorting out new fractional differentiations and integrations which have a kernel depending
upon a function and this makes the range of definition expanded [13, 14]. Furthermore, models based
on these fractional operators provide excellent results to be compared with the integer-order
differentiations [15-27].

The derivatives in this calculus seemed complicated and lost some of the basic properties that usual
derivatives have such as the product rule and the chain rule. However, the semigroup properties of these
operators behave well in some cases. Recently, the authors in [28] defined a new well-behaved simple
derivative called “conformable fractional derivative” which depends just on the basic limit definition
of the derivative. It will define the derivative of higher-order (i.e., order 6 > 1) and also define the
integral of order 0 < 6 < 1 only. It will also prove the product rule and the mean value theorem and

solve some (conformable) differential equations where the fractional exponential function e§ plays an
important rule. Inequalities and their utilities assume a crucial job in the literature of pure and applied
mathematics [29-37]. The assortment of distinct kinds of classical variants and their modifications
were built up by using the classical fractional operators.

Convexity and its applications exist in almost every field of mathematics due to impermanence in
several areas of science, technology in nonlinear programming and optimization theory. By utilizing
the idea of convexity, numerous variants have been derived by researchers, for example, Hardy, Opial,
Ostrowski, Jensen and the most distinguished one is the Hermite-Hadamard inequality [38—41].

Let 7 c R be an interval and Q : 7 — R be a convex function. Then the double inequality

ll+12
2

Q) + Qh)

(- 1DQ( >

L
) < f@(z)dz <(h-1) (1.1)
I

holds for all [}, 1, € T with [; # ,. Clearly, if Q is concave on 7, then one has the reverse of inequality
(1.1). By taking into account fractional integral operators, several lower and upper bounds for the mean
value of a convex function can be obtained by utilizing of inequality (1.1).

Exponentially convex functions have emerged as a significant new class of convex functions,
which have potential applications in technology, data science, and statistics. In [42], Bernstein
introduced the concept of exponentially convex function in covariance formation, then the idea of an
exponentially convex function is extended by inserting the condition of r-convexity [43]. Following
this tendency, Jakseti¢ and Pecari¢ introduced various kinds of exponentially convex functions in [44]
and have contemplated the applications in Euler-Radau expansions and Stolarsky means. Our aim is
to utilize the exponential convexity property of the functions as well as the absolute values of their
derivatives in order to establish estimates for conformable fractional integral introduced by
Abdeljawed [45] and Jarad et al. [46].

Following the above propensity, we present a novel technique for establishing new generalizations
of Hermite-Hadamard inequalities that correlate with exponentially rgs-convex functions and
conformable fractional operator techniques in this paper. The main purpose is that our consequences,
which are more consistent and efficient, are accelerated via the fractional calculus technique. In
addition, our consequences also taking into account the estimates for Hermite-Hadamard inequalities
for exponentially 7gs-convex functions. We also investigate the applications of the two proposed
conformable fractional operator to exponentially 7gs-convex functions and fractional calculus. The
proposed numerical experiments show that our results are superior to some related results.
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2. Preliminaries

Before coming to the main results, we provide some significant definitions, theorems and properties
of fractional calculus in order to establish a mathematically sound theory that will serve the purpose of
the current article.

Awan et al. [47] proposed a new class of functions called exponentially convex functions.

Definition 2.1. (See [47]) A positive real-valued function @ : K c R — (0,00) is said to be
exponentially convex on K if the inequality

Qb —0)%, Q2.1)

QWL+ (1 -Dh) <9

e(tll
holds for all 1,1, € R,a € Rand ¥ € [0, 1].

Now, we introduce a novel concept of convex function which is known as the exponentially zgs-
convex function.

Definition 2.2. A positive real-valued function Q : K c R — (0, 00) is said to be exponentially
tgs-convex on K if the inequality

Q) N Q(lz)],
eah ealz

QWL + (1 =y < (1 — ﬂ)[

(2.2)

holds for all 1,1, e R,a € Rand ¥ € [0, 1].
The conformable fractional integral operator was introduced by Abdeljawad [45].

Definition 2.3. (See [45]) Let p € (n,n + 1] and 6 = p — n. Then the left and right-sided conformable
fractional integrals of order p > 0 is defined by

,’;Q(z) = % f(z — '@ - LY QDI (2.3)
Iy
and
b
gQ(z) = % f @ = 2)"(l, — 9~ 'Q)dY. (2.4)

Next, we demonstrate the following fractional integral operator introduced by Jarad et al. [46].

Definition 2.4. (See [46]) Let § € C and R(5) > 0. Then the left and right-sided fractional conformable
integral operators of order p > 0 are stated as:

o 1 f G0y - @ -y QW)
It Q(z)—r(é)l ( p ) T 2.5)
and .
0.6 1 f (L=2 = (L =-9yy-1 QW)
T2 = 55, | ( > ) g (2.6)
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Recalling some special functions which are known as beta and incomplete beta function.

1

B(ly, ) = f 9111 = 9y,
0

v

Bv(ll,lz):fﬁ"‘l(l—ﬁ)lz‘ldﬁ, velo,1].
0

Further, the following relationship holds between classical Beta and incomplete Beta functions:
B(ly, k) =Bu(l, 1) + B1-,(I1, ),

LBy, b) — ()"
L+

B,(li+1,h) =

and
LB, (ly, b) — ()"

B,(li,L+1)= I +1
1+ b

3. Hermite-Hadamard type inequality for exponentially tgs-convex functions via conformable
fractional integrals

Throughout the article, let 7 = [l;,l;] be an interval in real line R. In this section, we shall
demonstrate some integral versions of exponentially tgs-convex functions via conformable fractional
integrals.

Theorem 3.1. Forp € (n,n+ 1)) withp > 0 and let Q : T C R — R be an exponentially tgs-convex
Sunction such that Q € L([,, ;]), then the following inequalities hold:

4F(p —I’L)Q(l] + lz)

I'po+1) 2
< 1 0 Q(IZ) + 0 Q(ll)
- (12 _ ll)p IT ealz l; eall
< 2+ Dlo—n+1) (QU) Q) ‘ 3.1)
I'(o+3) el eh
Proof. By using exponentially tgs-convexity of Q, we have
X+ y) - 1{Qx) Q)
- . 3.2
Q( 2 ) 4 ( erx - ey (3-2)
Letx =39+ (1 =} andy = (1 — Py + 3, we get
L+ QWL+ (1 -Dh) QWL + (1 -%))
4Q( 2 ) S ea/Q(ﬂl]+(1—l9)12) e(l[(1—19)11+1912] (3.3)
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If we multiply (3.3) by ni!ﬁ”(l — 9y with® € (0, 1), p > 0 and then integrating the resulting estimate

with respect to ¢ over [0, 1], we find

_Q(ll + lz)f(; (1 — 9y~ d

1 —
< l‘f (1 _ﬂ)p_n_lQ(ﬂh + (1 ﬂ)b)dﬂ
n: Jo

e(lQ(l?ll +( 1 —19)12)

1
QWL+ (1 =)
n n—1
19 (1- ﬁ)p (1= +9D]

:Il+12

dvy

I’l'

By setting u = 91, + (1 — 9¥)l,, we have

1 [ 9 + (1 =9l
Ilzﬁfﬂ"(l—ﬁ)p‘”*@( L+ 0= D0h) 1
- Jo

eon(ﬂll +(1-9)h)

_ 1 - n - 1Q(”)
= n1(12 — ll),ﬂ \ (lz — 1) (l/t [ ),D
1 Q)
(12—11)p i 6’“12 '

Analogously, by setting v = ¢, + (1 — 3)[;, we have

I, = 1' (1 = 9" 1QWL, + (1 — D))dd
n.Jo
1 l2 Q)
— _ n _ -l
WLy . v=0)"-v) P dv
1 » , Q)

T h—hyh e

Thus by using (3.5) and (3.6) in (3.4), we get the first inequality of (3.1).

Consider
QWL + (1 — Dy < (1 - 29)(Q(h) ilezi))
and
QW + (1 — D) < 9 — ﬂ)(Q(ll) iilf))
By adding
Q(ll)

QWL + (1 - D) + QWL + (1 —P)y) < 29(1 — 1?)(

Q(lz)

ealz

)-

(3.4)

(3.5)

(3.6)

(3.7)

If we multiply (3.7) by %ﬁ”(l — 9P ! with ¥ € (0,1),p > 0 and then integrating the resulting

inequality with respect to @ over [0, 1], we get

1 0 Q(ZZ) 0 %
Gl * ]

l'l" ea/lz l; ea’ll
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< 2(n+ Do —n + 1)<Q(ll) N Q(lz))
I'(p+3)

which is the required result. O

(3.8)

eall ealz

Some special cases of above theorem are stated as follows:

Corollary 3.1. Choosing a = 0, then Theorem 3.1 reduces to a new result

et

<

(L - ll)"[ ’pTQ(IZ) + gQ(ll)]

< 2n+ DI(p—n+1)
- ['(p+3)
Remark 3.1. Choosing p = n+ 1 and @ = 0, then Theorem 3.1 reduces to Theorem 3.1 in [19].

(@) + Q).

4. Hermite-Hadamard type inequality for differentiable exponentially tgs-convex functions via
conformable fractional integrals
Our next result is the following lemma which plays a dominating role in proving our coming results.

Lemma 4.1. For p € (n,n + 1]) withp > 0 and let Q : I C R — R be differentiable function on
I°(interior of I) with l; < I, such that Q € L([l, L]), then the following inequality holds:

Q) + Q(lz)) n!

BM+Lp_m( 2 2L —Ly

[ ,?Q(lz) + gQ(ll)]
1
= f Biy(n+ L,p—n)-B,(n+1,p —n)Q W + (1 — H)d?. 4.1)
0
Proof. 1t suffices that

1
f Bi_u(m+1L,p—n)-B,(n+ 1,0 —n)Q W, + (1 — N)dd
0

1
= f Bi_u(n+ 1,p —n)Q @ + (1 — Dlr)do
0

1
—f B.(n+ 1,0 —n)Q @I + (1 = H))dd
0

=5,-5, (4.2)

Then by integration by parts, we have
1
S = f Bi_u(n+1,p—n)Q @ + (1 - Dl)dd
0
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1 1-u
= f (f Vi1 - v)p_”_ldv)Q'(ﬂll + (1 = M)dd
0 0

B(n+1,p —n)QL)

~L-1
1
L-1

1
f (A —w)'u""'QW + (1 — $)l)d?
0

1
= B(n+1,p — n)Q)
L—-1

T )W -
- dz
L-=0LJ, \i =L/ \l; -1 L =1

= Lo ZIB(n + 1,0 - QL) - @ l )p+l

T I, (4.3)
Analogously
1
S, = f B.(n + 1,p - H)Q,(ﬁll +(1- N)dd
0

1 U
= f (f Vi1 - v)p_”_ldv)Q'(l‘}ll + (1 = Dl)dd
0 0

= ! B(n+ 1,0 — n)Q(l))
12 -

f W)"(1 — uy™"'QWIL, + (1 — Hl)dd
0

2_11

= ll B(n+ 1,0 — n)Q(l;)

2= l]
1 f (Z—lz )n( A —Z)’D_n_l Q(Z)
+ —dZ
L-=0LJ, \i =L\l =1 Lh—=1
1 n!
= _lz - ll B(I’l + l,p - I’l)Q(l]) - W Q(lz) (44)

11

By substituting values of S and S, in (4.2) and then If we multiply by 24, we get (4.1). O

For the sake of simplicity, we use the following notation:
Q(ll) + Q(lz)) n!
2 2L, - L)y

Theorem 4.2. Forp € (n,n+ 1)) withp > 0and let Q : I C R — R be a differentiable function on I°
with I < b, such that @ € Li([l}, L]). If | Q", with r > 1, is an exponentially tgs-convex function, then
the following inequality holds:

Ta(p:Bim by, ) = Bln+ 1,p = ) [(T2@w) + T2Qu)]|.

_1

L =1 1
| Ta(e: Bin:li, )| < ==—(B(n+ Lp—n+1) =B(n+ L,p—n) + B(n +2,p — n))

arlz / r arly |y r
x( QDI + e*Q ()] ) (4.5)

6 ewrl 1 earlz
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Proof. Utilizing exponentially tgs-convex function of | @|", Lemma 4.1 and Holder’s inequality, one
obtains

| Yalo; By ns ly, 1)
_ 1
- ‘ %f Biu(n+1,p—n)=B,(n+ 1,p — n)Q B, + (1 —ﬁ)lz)dﬂ|
0

— ! -
< lzzll(f(Bl_u(n+1,p—n)—Bu(n+1,p—n))d19)
0

1 1
:t f Q@ + (1 = D)l dd)
0

L-1 1-3
< 2 (B(n+1,p—n+1)—B(n+1,p—n)+B(n+2,p—n))

( f o1 -9 =5 2lr +‘%r)dﬁ)l

eozlz
L -1 1-3
<= B+ lLp-n+1)-B+1lp-n)+Bn+2p-n)

ear12|Q/(ll)|r+ea/rl| |Q/(lz)|r %
X( 6earllearlz ) ’

which is the required result. O

(4.6)

Theorem 4.3. Forp € (n,n+ 1l withp > Q0and let Q : I C R — R be a differentiable function on
I° with Iy < I, such that @ € Li([l;,Lb]). If |Q', with r, s > 1 such that % + } = 1, is exponentially
tgs-convex function, then the following inequality holds:

lz—ll % 1-u | S 5
| Talps Bins, )] < 2= (2 f ( f V(L = vy dv) du)
0 u

arlz / r arly | ) Ty -
x( QU +e IQ(lz)l)

6earl1 earlz

4.7)

Proof. Utilizing exponentially tgs-convex function of | Q|" and well-known Holder inequality, one
obtains

| Ta(o: B;n; 1y, 1)
L =1

f Bi_u(n+1L,p—n)-B,(n+ 1,0 —n)Q W + (1 - ﬁ)l2)dﬁ‘

1—1 1
<2 1f|B1u(n+1p n)—Byn+1,p— n)|‘d19)

1 1
><( f |Q’(ﬂll+(1—ﬁ)12)|’dﬁ)'

_12—11 f(Bl n+1,p—-n)-B,(n+1,p—n))’du
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1

1 1 1 ’ r ’ 1
+f(Bu(n+1,p—n)—B1_u(n+l,p—n))sdu)é(f ﬂ(l—ﬂ)(lQ(Zl)l +|Q(12)|q)dﬁ)
% 0

ea/rl 1 earlz

1 1
l _l 3 1-u Ky 1 u Ky 5
=2 5 l(f (f V(1 — v)p_”_]dv) dv + f (f Vil — v)p_”_ldv) dv)
0 u % 1-u

x(e"’”la'(zl)r +emh |a'<lz>|r)i

6earll eozrlz

_hoh 2 j; : ( f T —v)f"”-ldv)sdu)i(emh'@(l‘)lr”mh 'Q’(ZZ)lr)l, (4.8)

2 6earll earlz

which is the required result. m|
5. Hermite-Hadamard inequality within the generalized conformble integral operator

This section is devoted to proving some new generalizations for exponentially tgs-convex functions
within the generalized conformable integral operator.

Theorem 5.1. Forp > 0andletQ : [I;,,] C R — R be an exponentially tgs-convex function such that
Q € Li[ly, 1], then the following inequality holds:

4 hth I'(9) ps Q) s QL)
6p5Q( 2 ) S (12 _ l] )pé l]+ ea/lz + l; eall
1 p+1 p+2 Q) Q)
< > B(—p ,6)+B(—p 6)]( ol T ah ) (5.1)

Proof. Taking into account (3.3) and conducting product of (3.3) by (I‘Tﬁp)‘s“ﬁp‘] with ¥ € (0,1),p > 0
and then integrating the resulting estimate with respect to @ over [0, 1], we find

11 _ 90\6-1
4Q(ll+lz)f (1 ﬁp) 90129
2 0 P

fl (1 - W)é—lﬁp_l QI + (1 —Dy)
0

e +(1-9)h)

1 _ o-1 _
+f (1 ﬂp) ﬂp_lQ(ﬁlz+(1 ﬁ)ll)dﬂ
0

0 eWh+(1-9);)

dv

=R +R,. (52)
By making change of variable u = ¥, + (1 — #)l,, we have

1 _ -1 _
Rlzf(l ﬁp) 501 QWL + (1 D)) o
0

Je el +(1-9))

_ f" (1 - (%)p)‘s‘l(u -1 )p‘lQ(u) du
b P ll — lz e ll — lz
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6117

_ ; D (L-LYy - (- u)p)(; PRSI Q(u)
(b= Lye
I'(6 paQ(h)
(lz — LT h eeh (5-3)
Substituting v = 31, + (1 — 9¥)l;, we have
=9y QWL + (1= 9))
R, = j(; ( 0 ) ﬂp oL+ (1-0)) dv
_ fll (1 - (lvz__lll] )p)5‘1(v -1 )p‘lQ(v) du
U p L -1 e” I —1
L (=LY -0=LY 1Q(v)
- — LY
G-y S
I'(6) paQ(lz)
Tl -LyRTh eh S
Thus by using (5.2) and (5.3) in (5.4), we get the first inequality of (5.1).
Consider (l ) b
QL + (1= 0)h) < (1 = (=5 + =00)
nd au , at
QL + (1= 9)h) < 91 = (7 + =70)
By adding
QI + (1 — D) + QI + (1 — D)) < 29(1 — ﬁ)(fozi) Giillj)) (5.5)

If we multiply (5.5) by (%)‘Hﬁ”‘ with 9 € (0, 1), p > 0 and then integrating the resulting estimate
with respect to ¥ over [0, 1], we get

1'(6) 05 Qb)) s QL)
(12 _ ll)pé [j ealz j eall ]
1 p+ 1 p+ 2 Q(ll) Q(lz)
s;@(p,®+B(p,®Kwh+e%) (5.6)
the desired inequality is the right hand side of (5.1). m|

Our main results depend on the following identity.

Lemma 5.2. Forp > 0andlet Q : I C R — R be a differentiable function on (I, 1) with l; < I, such
that Q € L[ly, ], then the following identity holds:

(Q(h) + Q(lz)) PTG+ 1)
2 2( — Iy

_ (L —211),06 qu [(1 —pﬂp )‘5 B (1 - (1p_ oy )6]Q’(19[] + (1 = N)d?Y. 5.7)

[T7° Q) + T7 Q)]
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Proof. Tt suffices that

fo | [(1 _pﬁpf ) (1 - (lp_ - )6]9’0911 + (1= Dh)dd

1 _ Ky 3 3 5
=f (—1 ﬂp)Q'(ﬁll+(1—ﬁ)lz)dﬁ—(M) Q1 + (1 - 9))dd
0 Y o

=M, - M,. (5.8)

Using integration by parts and making change of variable technique, we have

1 _ S
M, = f (ﬂ) Q@1 + (1 — 9)b)dd
0 P
1 (1—9°y 1
= lz(T) QW1 + (1 — H)dI|,

1 1= o1
L0 f (_ﬁp) 97QW1 + (1 - 9)h)d?
Lh=5LJo P

__Qb) S Lip—geyt
_<lz—ll)p6_lz—zlfo( P ) @' + (1 = D)r)dd

QL) oI'(o)

— _ 0.6
Sl Gy A
Analogously
1 _ _ )
M, = f (M) QW1 + (1 = D)y)dd
0 P
1 1-a-py 1
=7 12( )Q(ﬂh + (1 =)
1 _ _ -1
_ f Q(M) (1 =9'QWL + (1 — Dp)dd
L= Jo Y
-Q()) 5

L= =9y
B (12 - ll)P6 " lz - l] f ( (P ) ) (1 - ﬁ)p_lQ(ﬁll + (1 - ﬁ)lz)dﬁ
0

-Q(I) oI'(o)
= +
(L=1)p° (L=t
(L-1)p’

By substituting values of M; and M, in (5.8) and then conducting product on both sides by ==,
we get the desired result. O

J‘.}’&Q(lz)- (5.9)

Theorem 5.3. Forp > 0 and let Q : I C R — R be a differentiable function on I° with |, < l, such
that Q € Li([l},LL)). If | Q|', with r > 1, is an exponentially tgs-convex function, then the following
inequality holds

|(Q(l1) + Q(lz)) P°T( + 1)

. - ST + e

<

(b - ll)Pd( 1 B(1 QNI + e (L)

1 /1 -1 t
2 pb+1 E’6+ l) + prB(;’é—i— 1)) ( 6earli garh ) : (510)
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Proof. Using exponentially tgs-convexity of | Q|", Lemma 5.2, and the well-known Hoélder inequality,
we have

'(Q(ll) + Q(lz)) B P°T(S + 1)
2 20l = Lyy°

_ ‘ w fo 1 [(%)5—(#)6]&(&11 + (1 = 9))dd

< %(‘fo‘l [(1 ;ﬁp)(S ~ (1 — (L_ ﬁ)p)é]dﬂ)pi

1 1
t f Q@+ (1 - 9))dd)
0

< (S o [ ()

1

X( fo 01— o2 L o)

earl 1 e(trlz

l, —1 ) 1 1 1 1 1—% arly (IO + arly (1 rir
_ 1)/0( 6+1B(—,6+1)+EB(—2,6+1)) (6 Q1) : 61 Q' (L) ) ’
2 p p p p 6er e

the required result. O

Q) + T3 Q)|

6. Applications

Let [}, 1, > 0 with [; # [,. Then the arithmetic mean A([;, [,), harmonic mean H(/;, l,), logarithmic
mean L(I, ;) and n-th generalized logarithmic mean L,(/,, [,) are defined by

I+
Ay, L) = 12 2,
G, L) = VL,
L-1
Lh,hL)= ———
L) Ink —Inl,

and

ln+1 _ ln+l
Lnal,zz):[( VT

n+ DL -1)

respectively. Recently, the bivariate means have attracted the attention of many researchers [47-58]
due to their are closely related to the special functions.

In this section, we use our obtained results in section 5 to provide several novel inequalities
involving the special bivariate means mentioned above.

]" (n+0,-1),

Proposition 6.1. Let [;,l, > O with [, > [,. Then

L =1

1
m[(‘f%ll)’ ey
r e(l

1
AL, B) - 5Li(ll,zz) <

AIMS Mathematics Volume 5, Issue 6, 6108—-6123.
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Proof. Letp =6 = 1 and Q(z) = 7. Then the desired result follows from Theorem 5.3. O

Proposition 6.2. Let [,,l, > O with [, > [,. Then

_ 1 L—1 (L) + (")t
H'G, L) - =L, b)| <
BB = 5L b < o |
Proof. Letp =6 =1and Q(z) = % Then the desired result follows from Theorem 5.3. |

Proposition 6.3. Let [;,l, > O with [, > [,. Then

(12 _ ll)lnl (ealzl’f_l)r + (e(tll lg—l)r lr
2 6e(¥r(11+lz)

1
A} 5) - ELZ(ll’ b)| <
Proof. Letp =6 =1 and Q(z) = 7". Then the desired result follows from Theorem 5.3. O
7. Conclusions

In this paper, we proposed a novel technique with two different approaches for deriving several
generalizations for an exponentially 7gs-convex function that accelerates with a conformable integral
operator. We have generalized the Hermite-Hadamard type inequalities for exponentially 7gs-convex
functions. By choosing different parametric values p and 6, we analyzed the convergence behavior
of our proposed methods in form of corollaries. Another aspect is that to show the effectiveness of
our novel generalizations, our results have potential applications in fractional integrodifferential and
fractional Schrodinger equations. Numerical applications show that our findings are consistent and
efficient. Finally, we remark that the framework of the conformable fractional integral operator, it is
of interest to further our results to the framework of Riemann-Liouville, Hadamard and Katugampola
fractional integral operators. Our ideas and the approach may lead to a lot of follow-up research.
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