Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Porous high-Tc superconductors and their applications

1 Experimental Physics, Saarland University, P. O. Box 151150, 66041 Saarbrücken, Germany
2 Superconducting Materials Laboratory, Department of Materials Science and Engineering,Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan

Topical Section: Porous Materials

Porous high-Tc superconducting materials offer several important benefits as compared to standard-type samples including an easy scalability towards large sample sizes, an easier oxygenation process and reduced weight. Due to these advantages, several different approaches to develop such samples were carried out in the literature. In this contribution, we present the microstructures and the physical properties of superconducting foams of YBa2Cu3O7 and fabric-like, nanowire networks of Bi2Sr2CaCu2O8. Further, we discuss the properties of such samples concerning both the physical parameters and the respective microstructures and give an overview about possible applications.
  Article Metrics

Keywords high-Tc superconductors; foams; nanowire fabrics; microstructure; magnetization; critical currents

Citation: Michael R. Koblischka, Anjela Koblischka-Veneva. Porous high-Tc superconductors and their applications. AIMS Materials Science, 2018, 5(6): 1199-1213. doi: 10.3934/matersci.2018.6.1199


  • 1. Foltyn SR, Civale L, MacManus-Driscoll JL, et al. (2007) Materials science challenges for high-temperature superconducting wire. Nat Mater 6: 631–642.
  • 2. Murakami M (1991) Melt Processed High-Temperature Superconductors, Singapore: World Scientific.
  • 3. Scanlan RM, Malozemoff AP, Larbalestier DC (2004) Superconducting materials for large scale applications. P IEEE 92: 1639–1654.    
  • 4. Grant PM, Sheahen TP (1998) Cost projection for high temperature superconductors. Applied Superconductivity Conference, Palm Desert, CA.
  • 5. Hull JR, Strasik M (2010) Concepts for using trapped flux bulk high-temperature superconductors in motors and generators. Supercond Sci Tech 23: 124005.    
  • 6. Tomita M, Murakami M (2003) High-temperature superconductor bulk magnets that can trap magnetic fields above 17 tesla at 29 K. Nature 421: 517–520.    
  • 7. Durrell JH, Dennis AR, Jaroszynski J, et al. (2014) A trapped field of 17.6 T in melt-processed bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Supercond Sci Tech 27: 082001.
  • 8. Johansen TH (2000) Flux-pinning-induced stress and magnetostriction in bulk superconductors. Supercond Sci Tech 13: R121–R137.    
  • 9. Diko P (2004) Cracking in melt-grown RE-Ba-Cu-O single-grain bulk superconductors. Supercond Sci Tech 17: R45–R58.    
  • 10. Fiertek P, Sadowski W (2006) Processing of porous structures of YBa2Cu3O7−δ high-temperature superconductor. Mater Sci-Pol 24: 1103–1108.
  • 11. Fiertek P, Andrzejewski B, Sadowski W (2010) Synthesis and transport properties of porous superconducting ceramics of YBa2Cu3O7−δ. Rev Adv Mater Sci 23: 52–56.
  • 12. Huang SL, Koblischka MR, Johansen TH, et al. (1997) Increased flux pinning in both pure and carbon-nanotube-embedded Bi-2212 superconductors. Physica C 282–287: 2279–2280.
  • 13. Petrov MI, Tetyueva TN, Kveglis LI, et al. (2003) Synthesis, Microstructure, and the Transport and Magnetic Properties of Bi-Containing High-Temperature Superconductors with a Porous Structure. Tech Phys Lett 29: 986–988.    
  • 14. Reddy ES, Schmitz GJ (2002) Ceramic foams. Am Ceram Soc Bull 81: 35–37.
  • 15. Reddy ES, Herweg M, Schmitz GJ (2003) Processing of Y2BaCuO5 foams. Supercond Sci Tech 16: 608–612.
  • 16. Noudem JG, Reddy ES, Tarka M, et al. (2002) Electrical performance of single domain YBa2Cu3O7 fabrics. Physica C 366: 93–101.    
  • 17. Zhang GQ, Lu XL, Zhang T, et al. (2006) Microstructure and superconductivity of highly ordered YBa2Cu3O7−δ nanowire arrays. Nanotechnology 17: 4252–4256.
  • 18. Li JM, Zeng XL, Mo AD, et al. (2011) Fabrication of cuprate superconducting La1.85Sr0.15CuO4 nanofibers by electrospinning and subsequent calcination in oxygen. CrystEngComm 13: 6964–6967.
  • 19. Duarte EA, Quintero PA, Meisel MW, et al. (2013) Electrospinning synthesis of superconducting BSCCO nanowires. Physica C 495: 109–113.    
  • 20. Duarte EA, Rudawski NG, Quintero PA, et al. (2015) Electrospinning of superconducting YBCO nanowires. Supercond Sci Tech 28: 015006.
  • 21. Zeng XL, Koblischka MR, Hartmann U (2015) Synthesis and characterization of electrospun superconducting (La,Sr)CuO4 nanowires and nanoribbons. Mater Res Express 2: 095022.    
  • 22. Rotta M, Zadorosny L, Carvalho CL, et al. (2016) YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceram Int 42: 16230–16234.    
  • 23. Koblischka MR, Zeng XL, Karwoth T, et al. (2016) Transport and magnetic measurements on Bi2Sr2CaCu2O8 nanowire networks prepared via electrospinning. IEEE T Appl Supercon 26: 1800605.
  • 24. Koblischka MR, Zeng XL, Karwoth T, et al. (2016) Magnetic properties of electrospun non-woven superconducting fabrics. AIP Adv 6: 035115.    
  • 25. Zeng XL, Koblischka MR, Karwoth T, et al. (2017) Preparation of granular Bi-2212 nanowires by electrospinning. Supercond Sci Tech 30: 035014.    
  • 26. Cena CR, Torsoni GB, Zadorosny L, et al. (2017) BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceram Int 43: 7663–7667.    
  • 27. Koblischka MR, Zeng XL, Laurent F, et al. (2018) Characterization of electrospun Bi2Sr2CaCu2O8+δ nanowires with reduced preparation temperature. IEEE T Appl Supercon 28: 7200505.
  • 28. Noudem JG (2011) Developing of shaping textured YBaCuO superconductors. J Supercond Nov Magn 24: 105–110.
  • 29. Nie Z, Lin Y, Tong Q (2017) Modeling structures of open cell foams. Comp Mater Sci 131: 160–169.    
  • 30. Wu H, Pan W, Lin D, et al. (2012) Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceram 1: 2–23.    
  • 31. Li D, McCann JT, Xia YN (2006) Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89: 1861–1869.    
  • 32. Huang ZM, Zhang YZ, Kotaki M, et al. (2003) A review on polymer nanofibers by electrospinning and their application in nanocomposites, Compos Sci Technol 63: 2223–2253.
  • 33. Medeiros ES, Glenn GM, Klamczynski AP, et al. (2009) Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions. J Appl Polym Sci 113: 2322–2330.
  • 34. Koblischka-Veneva A, Koblischka MR, Zeng XL, et al. (2018) TEM and electron backscatter diffraction analysis (EBSD) on superconducting nanowires. J Phys Conf Ser 1054: 012005.
  • 35. Zeng XL, Karwoth T, Koblischka MR, et al. (2017) Analysis of magnetization loops of electrospun non-woven superconducting fabrics. Phys Rev Mater 1: 044802.
  • 36. Noudem JG, Reddy ES, Schmitz GJ (2003) Magnetic and transport properties of YBa2Cu3Oy foams. Physica C 390: 286–290.
  • 37. Koblischka MR, Sosnowski J (2005) Temperature-depedendent scaling of pinning force data in Bi-based high-Tc superconductors. Eur Phys J B 44: 277–280.
  • 38. Nakazato K, Muralidhar M, Koblischka MR, et al. (2014) Fabrication of bulk Y–Ba–Cu–O superconductors with high critical current densities through the infiltration-growth process. Cryogenics 63: 129–132.    
  • 39. Koblischka MR, Koblischka-Veneva A, Chang C, et al. (2018) Flux pinning analysis of superconducting YBCO foam struts. IEEE T Appl Supercon [In press].
  • 40. Gokhfeld DM (2014) An extended critical state model: Asymmetric magnetisation loops and field dependence of the critical current of superconductors. Phys Solid State 56: 2380–2386.
  • 41. Mikheenko PN, Uprety KK, Dou SX (2001) BSCCO, In: Cardwell DA, Ginley DS, Handbook of superconductiing materials, Bristol: IOP Publishing, 947–993.
  • 42. Terent'ev KYu, Gokhfeld DM, Popkov SI, et al. (2011) Pinning in a Porous High-Temperature Superconductor Bi2223. Phys Solid State 53: 2409–2414.    
  • 43. Noudem JG, Guilmeau E, Chateigner D, et al. (2004) Properties of YBa2Cu3Oy-textured superconductor foams. Physica C 408–410: 655–656.
  • 44. Tournier R, Beaugnon E, Belmont O, et al. (2000) Processing of large Y1Ba2Cu3O7−δ single domains for current-limiting applications. Supercond Sci Tech 13: 886–896.
  • 45. Jung A, Diebels S, Koblischka-Veneva A, et al. (2013) Microstructural analysis of electrochemical coated open-cell metal foams by EBSD and nanoindentation. Adv Eng Mater 16: 15–20.
  • 46. Goodfellow A, Shi YH, Durrell JH, et al. (2016) Microstructural evolution in multiseeded YBCO bulk samples grown by the TSMG method. Supercond Sci Tech 19: 115005.
  • 47. Haupt SG, Riley GR, McDevitt JT (1993) Conductive polymer/high-temperature superconductor composite structures. Adv Mater 5: 755–758.
  • 48. Shirbeny W, Hafez M, Mahmoud WE (2013) Synthesis and characterization of PVA/YBCO nanocomposite for improvement of solar energy conversion. Polym Composite 34: 587–591.    
  • 49. SupraMotion 2017: Superconductors for automatization. Brochure FESTO AG & Co KG. Available from: http:// www.festo.com/supra.


Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved