Citation: Daria Wehlage, Robin Böttjer, Timo Grothe, Andrea Ehrmann. Electrospinning water-soluble/insoluble polymer blends[J]. AIMS Materials Science, 2018, 5(2): 190-200. doi: 10.3934/matersci.2018.2.190
[1] | Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028 |
[2] | Youshan Tao, J. Ignacio Tello . Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences and Engineering, 2016, 13(1): 193-207. doi: 10.3934/mbe.2016.13.193 |
[3] | Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521 |
[4] | Xin Lin, Xingyuan Li, Binqiang Ma, Lihua Hang . Identification of novel immunomodulators in lung squamous cell carcinoma based on transcriptomic data. Mathematical Biosciences and Engineering, 2022, 19(2): 1843-1860. doi: 10.3934/mbe.2022086 |
[5] | Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547 |
[6] | Yi Shi, Xiaoqian Huang, Zhaolan Du, Jianjun Tan . Analysis of single-cell RNA-sequencing data identifies a hypoxic tumor subpopulation associated with poor prognosis in triple-negative breast cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 5793-5812. doi: 10.3934/mbe.2022271 |
[7] | Xiaowei Zhang, Jiayu Tan, Xinyu Zhang, Kritika Pandey, Yuqing Zhong, Guitao Wu, Kejun He . Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. Mathematical Biosciences and Engineering, 2024, 21(2): 2407-2431. doi: 10.3934/mbe.2024106 |
[8] | Yu Jiang, Lijuan Lin, Huiming Lv, He Zhang, Lili Jiang, Fenfen Ma, Qiuyue Wang, Xue Ma, Shengjin Yu . Immune cell infiltration and immunotherapy in hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2022, 19(7): 7178-7200. doi: 10.3934/mbe.2022339 |
[9] | Hasitha N. Weerasinghe, Pamela M. Burrage, Dan V. Nicolau Jr., Kevin Burrage . Agent-based modeling for the tumor microenvironment (TME). Mathematical Biosciences and Engineering, 2024, 21(11): 7621-7647. doi: 10.3934/mbe.2024335 |
[10] | Ernesto A. B. F. Lima, Patrick N. Song, Kirsten Reeves, Benjamin Larimer, Anna G. Sorace, Thomas E. Yankeelov . Predicting response to combination evofosfamide and immunotherapy under hypoxic conditions in murine models of colon cancer. Mathematical Biosciences and Engineering, 2023, 20(10): 17625-17645. doi: 10.3934/mbe.2023783 |
[1] | Nakajima T, Kajiwara K, McIntyre JE (1994) Advanced Fiber Spinning Technology, Woodhead Publishing. |
[2] |
Li D, Xia Y (2004) Electrospinning of Nanofibers: Reinventing the Wheel? Adv Mater 16: 1151–1170. doi: 10.1002/adma.200400719
![]() |
[3] |
Subbiah T, Bhat GS, Tock RW, et al. (2005) Electrospinning of Nanofibers. J Appl Polym Sci 96: 557–569. doi: 10.1002/app.21481
![]() |
[4] |
Greiner A, Wendorff JH (2007) Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew Chem Int Edit 46: 5670–5703. doi: 10.1002/anie.200604646
![]() |
[5] |
Lackowski M, Krupa A, Jaworek A (2011) Nonwoven Filtration Mat Production by Electrospinning Method. J Phys Conf Ser 301: 012013. doi: 10.1088/1742-6596/301/1/012013
![]() |
[6] | Filatov Y, Budyka A, Kirichenko V (2007) Electrospinning of Micro- and Nanofibers: Fundamentals and Applications in Separation and Filtration Processes, Moscow: Begell House Inc. |
[7] |
Lemma SM, Esposito A, Mason M, et al. (2015) Removal of bacteria and yeast in water and beer by nylon nanofibrous membranes. J Food Eng 157: 1–6. doi: 10.1016/j.jfoodeng.2015.02.005
![]() |
[8] |
Wang X, Kim YG, Drew C, et al. (2004) Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors. Nano Lett 4: 331–334. doi: 10.1021/nl034885z
![]() |
[9] |
Ashammakhi N, Ndreu A, Yang Y, et al. (2012) Nanofiber-based scaffolds for tissue engineering. Eur J Plast Surg 35: 135–149. doi: 10.1007/s00238-008-0217-3
![]() |
[10] |
Schnell E, Klinkhammer K, Balzer S, et al. (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/polyepsilon-caprolactone blend. Biomaterials 28: 3012–3025. doi: 10.1016/j.biomaterials.2007.03.009
![]() |
[11] |
Klinkhammer K, Seiler N, Grafahrend D, et al. (2009) Deposition of electrospun fibers on reactive substrates for in vitro investigations. Tissue Eng Part C 15: 77–85. doi: 10.1089/ten.tec.2008.0324
![]() |
[12] |
Großerhode C, Wehlage D, Grothe T, et al. (2017) Investigation of microalgae growth on electrospun nanofiber mats. AIMS Bioeng 4: 376–385. doi: 10.3934/bioeng.2017.3.376
![]() |
[13] |
Natu MV, de Sousa HC, Gil MH (2011) Electrospun Drug-Eluting Fibers for Biomedical Applications, In: Zilberman M, Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, Berlin, Heidelberg: Springer, 8: 57–85. doi: 10.1007/8415_2010_56
![]() |
[14] |
Pan JF, Liu NH, Sun H, et al. (2014) Preparation and Characterization of Electrospun PLCL/Poloxamer Nanofibers and Dextran/Gelatin Hydrogels for Skin Tissue Engineering. PLoS One 9: e112885. doi: 10.1371/journal.pone.0112885
![]() |
[15] |
Gu JY, Liu NH, Yang XR, et al. (2014) Adiposed-derived stem cells seeded on PLCL/P123 eletrospun nanofibrous scaffold enhance wound healing. Biomed Mater 9: 035012. doi: 10.1088/1748-6041/9/3/035012
![]() |
[16] |
Maslakci NN, Ulusoy S, Uygun E, et al. (2017) Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications. Polym Bull 74: 3283–3299. doi: 10.1007/s00289-016-1897-7
![]() |
[17] |
Kumar YS, Unnithan AR, Sen D, et al. (2015) Microgravity biosynthesized penicillin loaded electrospun polyurethane-dextran nanofibrous mats for biomedical applications. Colloid Surface A 477: 77–83. doi: 10.1016/j.colsurfa.2015.01.065
![]() |
[18] |
Rzayev ZMO, Bunyatova U, Simsek M (2017) Multifunctional colloidal nanofiber composites including dextran and folic acid as electro-active platforms. Carbohyd Polym 166: 83–92. doi: 10.1016/j.carbpol.2017.02.100
![]() |
[19] |
Deitzel JM, Kleinmeyer J, Harris D, et al. (2001) The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer 42: 261–272. doi: 10.1016/S0032-3861(00)00250-0
![]() |
[20] | Grothe T, Brikmann J, Meissner H, et al. (2017) Influence of Solution and Spinning Parameters on Nanofiber Mat Creation of Poly(ethylene oxide) by Needleless Electrospinning. Mater Sci 23: 342–349. |
[21] |
Grimmelsmann N, Grothe T, Homburg SV, et al. (2017) Electrospinning and stabilization of chitosan nanofiber mats. IOP Conf Ser Mater Sci Eng 254: 102006. doi: 10.1088/1757-899X/254/10/102006
![]() |
[22] | Böttjer R, Grothe T, Ehrmann A (2018) Functional Nanofiber Mats for Medical and Biotechnological Applications, In: Kyosev Y, Mahltig B, Schwarz-Pfeiffer A, Narrow and Smart Textiles, Springer International Publishing. |
[23] |
Panthi G, Park SJ, Chae SH, et al. (2017) Immobilization of Ag3PO4 nanoparticles on electrospun PAN nanofibers via surface oximation: Bifunctional composite membrane with enhanced photocatalytic and antimicrobial activities. J Ind Eng Chem 45: 277–286. doi: 10.1016/j.jiec.2016.09.035
![]() |
[24] |
Neisiany RE, Lee JKY, Khorasani SN, et al. (2017) Self-healing and interfacially toughened carbon fibre-epoxy composites based on electrospun core-shell nanofibers. J Appl Polym Sci 134: 44956. doi: 10.1002/app.44956
![]() |
[25] |
Kim GH, Park SH, Birajdar MS, et al. (2017) Core/shell structured carbon nanofiber/platinum nanoparticle hybrid web as a counter electrode for dye-sensitized solar cell. J Ind Eng Chem 52: 211–217. doi: 10.1016/j.jiec.2017.03.046
![]() |
[26] |
Guo JY, Niu QJ, Yuan YC, et al. (2017) Electrospun core-shell nanofibers derived Fe-S/N doped carbon material for oxygen reduction reaction. Appl Surf Sci 416: 118–123. doi: 10.1016/j.apsusc.2017.04.135
![]() |
[27] | Sabantina L, Mirasol JR, Cordero T, et al. (2018) Investigation of Needleless Electrospun PAN Nanofiber Mats. AIP Conf Proc, In press. |
[28] |
Liu C, Lafdi K (2017) Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends. J Appl Polym Sci 134: 45388. doi: 10.1002/app.45388
![]() |
[29] |
Ju YW, Oh GY (2017) Behavior of toluene adsorption on activated carbon nanofibers prepared by electrospinning of a polyacrylonitrile-cellulose acetate blending solution. Korean J Chem Eng 34: 2731–2737. doi: 10.1007/s11814-017-0171-5
![]() |
[30] | Liu YW, Peng XX, Cao Q, et al. (2017) Gel Polymer Electrolyte Based on Poly(vinylidene fluoride)/Thermoplastic Polyurethane/Polyacrylonitrile by the Electrospinning Technique. J Phys Chem C 35: 19140–19146. |
[31] | Böttjer R, Grothe T, Wehlage D, et al. (2018) Electrospraying poloxamer/(bio-)polymer blends using a needleless electrospinning machine. J Text Fib Mater 1: 2515221117743079. |
[32] | Grothe T, Grimmelsmann N, Homburg SV, et al. (2017) Green Electrospinning of Nanofiber Mats from Biopolymers for Medical and Biotechnological Applications, In: Mahltig B, Textiles: Advances in Research and Applications, Nova Science Publishers. |
[33] | Fuchs S, Hartmann J, Mazur P, et al. (2017) Electrospinning of Biopolymers and Biopolymer Blends. J Chem Pharm Sci 10: 1–3. |
1. | A. Friedman, Cancer as Multifaceted Disease, 2012, 7, 0973-5348, 3, 10.1051/mmnp/20127102 | |
2. | Teruki Nii, Toshie Kuwahara, Kimiko Makino, Yasuhiko Tabata, A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration, 2020, 26, 1937-3341, 1272, 10.1089/ten.tea.2020.0095 | |
3. | Alexei Tsygvintsev, Simeone Marino, Denise E. Kirschner, 2013, Chapter 13, 978-1-4614-4177-9, 367, 10.1007/978-1-4614-4178-6_13 | |
4. | Chongming Jiang, Chunyan Cui, Weirong Zhong, Gang Li, Li Li, Yuanzhi Shao, Tumor proliferation and diffusion on percolation clusters, 2016, 42, 0092-0606, 637, 10.1007/s10867-016-9427-2 | |
5. | Man‐Lan Guo, Mi‐Xin Sun, Jin‐Zhi Lan, Li‐Sha Yan, Jing‐Juan Zhang, Xiao‐Xia Hu, Shu Xu, Da‐Hua Mao, Hai‐Song Yang, Ya‐Wei Liu, Teng‐Xiang Chen, Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells, 2019, 37, 0263-6484, 72, 10.1002/cbf.3377 | |
6. | F. Caraguel, N. Bessonov, J. Demongeot, D. Dhouailly, V. Volpert, Wound Healing and Scale Modelling in Zebrafish, 2016, 64, 0001-5342, 343, 10.1007/s10441-016-9298-8 | |
7. | Yan Wang, Haiquan Jia, Huiyun Lin, Xiaogang Tan, Zhiyan Du, Huihua Chen, Yuanji Xu, Xiaoxi Han, Jiakai Zhang, Siyang Zhao, Xiaodan Yu, Yinglin Lu, Metastasis-associated gene,mag-1improves tumour microenvironmental adaptation and potentiates tumour metastasis, 2012, 16, 15821838, 3037, 10.1111/j.1582-4934.2012.01633.x | |
8. | 2013, Existence and uniqueness of weak solutions for a coupled mathematical model of tumor invasive process, 978-1-4673-2971-2, 688, 10.1109/ICCME.2013.6548338 | |
9. | Janet Dyson, Stephen A. Gourley, Glenn F. Webb, A non-local evolution equation model of cell–cell adhesion in higher dimensional space, 2013, 7, 1751-3758, 68, 10.1080/17513758.2012.755572 | |
10. | Tor Flå, Florian Rupp, Clemens Woywod, 2013, Chapter 11, 978-3-0348-0450-9, 221, 10.1007/978-3-0348-0451-6_11 | |
11. | Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014 | |
12. | Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, 2017, 401, 03043835, 74, 10.1016/j.canlet.2017.03.021 | |
13. | Urszula Ledzewicz, Heinz Schaettler, 2016, Chapter 11, 978-3-319-42021-9, 209, 10.1007/978-3-319-42023-3_11 | |
14. | Xiaofeng Dai, Zhifa Zhang, Jianying Zhang, Kostya (Ken) Ostrikov, Dosing: The key to precision plasma oncology, 2020, 17, 1612-8850, 1900178, 10.1002/ppap.201900178 | |
15. | ABDELGHANI BELLOUQUID, ELENA DE ANGELIS, DAMIAN KNOPOFF, FROM THE MODELING OF THE IMMUNE HALLMARKS OF CANCER TO A BLACK SWAN IN BIOLOGY, 2013, 23, 0218-2025, 949, 10.1142/S0218202512500650 | |
16. | Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 7, 978-1-4939-1792-1, 157, 10.1007/978-1-4939-1793-8_7 | |
17. | Tor Flå, Florian Rupp, Clemens Woywod, Bifurcation patterns in generalized models for the dynamics of normal and leukemic stem cells with signaling, 2015, 38, 01704214, 3392, 10.1002/mma.3345 | |
18. | Sharad P. Paul, 2016, Chapter 9, 978-3-319-20936-4, 89, 10.1007/978-3-319-20937-1_9 | |
19. | Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, 2016, 72, 0303-6812, 1255, 10.1007/s00285-015-0907-y | |
20. | Georgiana Eftimie, Raluca Eftimie, Quantitative predictive approaches for Dupuytren disease: a brief review and future perspectives, 2022, 19, 1551-0018, 2876, 10.3934/mbe.2022132 | |
21. | S.N. Antontsev, A.A. Papin, M.A. Tokareva, E.I. Leonova, E.A. Gridushko, Modeling of Tumor Occurrence and Growth-III, 2021, 1561-9451, 71, 10.14258/izvasu(2021)4-11 | |
22. | Kolade M. Owolabi, Albert Shikongo, Edson Pindza, 2023, Chapter 3, 978-981-99-5000-3, 53, 10.1007/978-981-99-5001-0_3 |