Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Photoactivated Fuel Cells (PhotoFuelCells). An alternative source of renewable energy with environmental benefits

Department of Chemical Engineering, University of Patras, 26500 Patras, Greece

Topical Section: The solar cell

This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.
  Article Metrics

Keywords Photoactivated Fuel Cells; photocatalytic fuel cells; PhotoFuelCells; solar cells; hydrogen production

Citation: Stavroula Sfaelou, Panagiotis Lianos. Photoactivated Fuel Cells (PhotoFuelCells). An alternative source of renewable energy with environmental benefits. AIMS Materials Science, 2016, 3(1): 270-288. doi: 10.3934/matersci.2016.1.270


  • 1. Becquerel E (1839) Mémoire sur les effets électriques produits sous l'influence des rayons solaires. Comptes Rendus 9: 561–567.
  • 2. Fujishima A, Honda K (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238: 37–38.    
  • 3. Kaneko M, Nemoto J, Ueno H, et al. (2006) Photoelectrochemical Reaction of Biomass and Bio-Related Compounds With Nanoporous TiO2 Film Photoanode and O2-Reducing Cathode. Electrochem Commun 8: 336–340.    
  • 4. Lianos P (2011) Production of Electricity and Hydrogen by Photocatalytic Degradation of Organic Wastes in a Photoelectrochemical Cell: The Concept of the Photofuelcell: A Review of a Re-Emerging Research Field. J Hazard Mater 185: 575–590.    
  • 5. Michal R, Sfaelou S, Lianos P (2014) Photocatalysis for Renewable Energy Production using PhotoFuelCells. Molecules 19: 19732–19750.    
  • 6. Shu D, Wu J, Gong Y, et al. (2014) BiOI-based photoactivated fuel cell using refractory organic compounds as substrates to generate electricity. Catal Today 224: 13–20.    
  • 7. Yang C, He Y, Li K, et al. (2015) Degrading organic pollutants and generating electricity in a dual-chamber rotating-disk photocatalytic fuel cell (RPFC) with a TiO2 nanotube array anode. Res Chem Intermed 41: 5365–5377.    
  • 8. Karanasios N, Georgieva J, Valova E, et al. (2015) Photoelectrocatalytic Oxidation of Organics Under Visible Light Illumination: A Short Review. Curr Org Chem 19: 512–520.    
  • 9. Lu S-J, Ji S-B, Liu J-C, et al. (2015) Photoelectrocatalytic oxidation of glucose at a ruthenium complex modified titanium dioxide electrode promoted by uric acid and ascorbic acid for photoelectrochemical fuel cells. J Power Sources 273: 142–148.    
  • 10. Li K, Zhang H, Tang T, et al. (2014) Optimization and application of TiO2/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously. Water Res 62: 1–10.    
  • 11. Sfaelou S, Sygellou L, Dracopoulos V, et al. (2014) Effect of the nature of cadmium salts on the effectiveness of CdS SILAR deposition and its consequences on the performance of sensitized solar cells. J Phys Chem C 118: 22873–22880.    
  • 12. Antoniadou M, Lianos P (2010) Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell. Appl Catal B 99: 307–313.
  • 13. Dou B, Song Y, Wang C, et al. (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renew Sust Energ Rev 30: 950–960.    
  • 14. Sfaelou S, Zhuang X, Feng X, et al. (2015) Sulfur-doped Porous Carbon Nanosheets as High Performance Electrocatalysts in PhotoFuelCells. RSC Adv 5: 27953–27963.    
  • 15. Kumagai H, Minegishi T, Sato N, et al. (2015) Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J Mater Chem A 3: 8300–8307.    
  • 16. Lin C-Y, Mersch D, Jefferson DA, et al. (2014) Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes. Chem Sci 5: 4906–4913.    
  • 17. Kibsgaard J, Jaramillo TF (2014) Molybdenum Phosphosulfide: An active, acid-stable, earth-abuntant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53: 14433–14437.    
  • 18. Antoniadou M, Sfaelou S, Dracopoulos V, et al. (2014) Platinum-free photoelectrochemical water splitting. Catal Commun 43: 72–74.    
  • 19. Buhler N, Meier K, Reber J-F (1984) Photochemical Hydrogen Production with Cadmium Sulfide Suspensions. J Phys Chem 88: 3261–3268.    
  • 20. Daskalaki VM, Panagiotopoulou P, Kondarides DI (2011) Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chem Eng J 170: 433–439.    
  • 21. Sakata T, Kawai T (1981) Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem Phys Lett 80: 341–344.    
  • 22. Antoniadou M, Kondarides DI, Dionysiou DD, et al. (2012) Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells. J Phys Chem 116: 16901–16909.
  • 23. Kondarides DI, Daskalaki VM, Patsoura A, et al. (2008) Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catal Lett 122: 26–32.    
  • 24. Rossetti I (2012) Review article: Hydrogen production by photoreforming of renewable substrates. ISRN Chem Eng 2012 Article ID 964936: 21 pages, doi:10.5402/2012/964936.
  • 25. Panagiotopoulou P, Antoniadou M, Kondarides DI, et al. (2010) Aldol Condensation Products During Photocatalytic Oxidation of Ethanol in a Photoelectrochemical Cell. Appl Catal B 100: 124–132.    
  • 26. Antoniadou M, Panagiotopoulou P, Kondarides DI, et al. (2012) Photocatalysis and Photoelectrocatalysis Using Nanocrystalline Titania Alone or Combined with Pt, RuO2 or NiO Co-Catalysts. J Appl Electrochem 42: 737–743.    
  • 27. Maeda Y, Fujishima A, Honda K (1981) The Investigation of Current Doubling Reactions on Semiconductor Photoelectrodes by Temperature Change Measurements. J Electrochem Soc 178: 1731–1734.
  • 28. Kalamaras E, Lianos P (2015) Current doubling effect revisited: Current multiplication in a PhotoFuelCell. J Electroanal Chem 751: 37–42.    
  • 29. Antoniadou M, Han C, Sfaelou S, et al. (2013) Solar energy conversion using Photo-Fuel-Cells. Sci Adv Mater 5: 1–8.    
  • 30. Antoniadou M, Sfaelou S, Lianos P (2014) Quantum dot sensitized titania for photo-fuel-cell and for water splitting operation in the presence of sacrificial agents. Chem Eng J 254: 245–251.    
  • 31. Antoniadou M, Lianos P (2009) Near Ultraviolet and Visible light photoelectrochemical degradation of organic substances producing electricity and hydrogen. J Photochem Photobiol A 204: 69–74.    
  • 32. Monfort O, Pop L-C, Sfaelou S, et al. (2016) Photoelectrocatalytic hydrogen production by water splitting using BiVO4 photoanodes. Chem Eng J 286: 91–97.    
  • 33. Selli E, Chiarello GL, Quartarone E, et al. (2007) A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chem Commun 5022–5024.
  • 34. Gan J, Lu X, Tong Y (2014) Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale 6: 7142–7164.    
  • 35. Horiuchi Y, Toyao T, Takeuchi M, et al. (2013) Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion-from semiconducting TiO2 to MOF/PCP photocatalysts. Phys Chem Chem Phys 15: 13243–13253.    
  • 36. Bhatt MD, Lee JS (2015) Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J Mater Chem A 3: 10632–10659.    
  • 37. Pop LC, Dracopoulos V, Lianos P (2015) Photoelectrocatalytic hydrogen production using nanoparticulate titania and a novel Pt/Carbon electrocatalyst: The concept of the “Photoelectrocatalytic Leaf”. Appl Surf Sci 333: 147–151.
  • 38. Gao P, Grätzel M, Nazeeruddin MK (2014) Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci 7: 2448–2463.
  • 39. Alexander BD, Kulesza PJ, Solarska R, et al. (2008) Metal Oxide photoanodes for solar hydrogen production. J Mater Chem 18: 2298–2303.    
  • 40. Fujimoto I, Wang N, Saito R, et al. (2014) WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. Int J Hydrogen Energ 39: 2454–2461.    
  • 41. Zhu T, Chong MN, Chan ES (2014) Nanostructured Tungsten Trioxide Thin Films Synthesized For Photoelectrocatalytic Water Oxidation: A Review. Chem Sus Chem 7: 2974–2997.    
  • 42. Liu X, Wang F, Wang Q (2012) Nanostructure-Based WO3 Photoanodes For Photoelectrochemical Water Splitting. Phys Chem Chem Phys 14: 7894–7911.    
  • 43. Mirbagheri N, Wang D, Peng C, et al. (2014) Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. ACS Catal 4: 2006–2015.    
  • 44. Mishra M, Chun D-M (2015) α-Fe2O3 as a photocatalytic material: A review. Appl Catal A 498: 126–141.    
  • 45. Wang W, Tade MO, Shao Z (2015) Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev 44: 5371–5408.
  • 46. Brüller S, Liang H-W, Kramm UI, et al. (2015) Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. J Mater Chem 3: 23799–23808.
  • 47. Xi FX, Liu HC, Li WP, et al. (2015) Fabricating CuS counter electrode for quantum dots-sensitized solar cell via electro-deposition and sulfurization of Cu2O. Electrochim Acta 178: 329–335.    
  • 48. Balis N, Dracopoulos V, Bourikas K, et al. (2013) Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSewith CoS and CuS counter electrodes. Electrochim Acta 91: 246–252.    
  • 49. Sayama K, Nomura A, Zou Z, et al. (2003) Photoelectrochemical decomposition of water on Nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 2908–2909.
  • 50. Liu X, Wang F, Wang Q (2012) Nanostructure-Based WO3 Photoanodes For Photoelectrochemical Water Splitting. Phys Chem Chem Phys 14: 7894–7911.    
  • 51. Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using Titania nanotube array photoanodes. Sol Energy Mater Sol Cells 92: 374–384.    


This article has been cited by

  • 1. Mingshan Zhu, Chunyang Zhai, Mingjuan Sun, Yufang Hu, Bo Yan, Yukou Du, Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation, Applied Catalysis B: Environmental, 2017, 203, 108, 10.1016/j.apcatb.2016.10.012
  • 2. Panagiotis Lianos, Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen, Applied Catalysis B: Environmental, 2017, 10.1016/j.apcatb.2017.03.067
  • 3. Mingjuan Sun, Jiayue Hu, Chunyang Zhai, Mingshan Zhu, Jianguo Pan, A p-n heterojunction of CuI/TiO 2 with enhanced photoelectrocatalytic activity for methanol electro-oxidation, Electrochimica Acta, 2017, 10.1016/j.electacta.2017.06.035
  • 4. Chunyang Zhai, Jiayue Hu, Mingjuan Sun, Mingshan Zhu, Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media, Applied Surface Science, 2017, 10.1016/j.apsusc.2017.06.175
  • 5. Jiayue Hu, Mingjuan Sun, Xiaoyan Cai, Chunyang Zhai, Junying Zhang, Mingshan Zhu, Two dimensional perovskite La 2 Ti 2 O 7 nanosheet as Pt catalyst support for photo-assisted methanol oxidation reaction, Journal of the Taiwan Institute of Chemical Engineers, 2017, 10.1016/j.jtice.2017.07.001
  • 6. A. C. Queiroz, E. A. Ticianelli, Photoelectrochemical Oxidation of Ethanol under Visible Light Irradiation on TaON-Based Catalysts, Journal of The Electrochemical Society, 2018, 165, 3, F123, 10.1149/2.0131803jes
  • 7. Jiayue Hu, Chaokai Yu, Chunyang Zhai, Sujuan Hu, Yuan Wang, Nianqing Fu, Lixi Zeng, Mingshan Zhu, 2D/1D heterostructure of g-C 3 N 4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol, Catalysis Today, 2018, 10.1016/j.cattod.2018.02.043
  • 8. Wan Fadhilah Khalik, Li-Ngee Ho, Soon-An Ong, Chun-Hong Voon, Yee-Shian Wong, Sara Yasina Yusuf, NikAthirah Yusoff, Sin-Li Lee, Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell, Chemosphere, 2018, 10.1016/j.chemosphere.2018.03.113
  • 9. Fatemeh Safdari, Amir Nasser Shamkhali, Mohsen Tafazzoli, Gholamabbas Parsafar, Adsorption of pollutant cations from their aqueous solutions on graphitic carbon nitride explored by density functional theory, Journal of Molecular Liquids, 2018, 10.1016/j.molliq.2018.03.114
  • 10. Ermete Antolini, Photo-assisted methanol oxidation on Pt-TiO 2 catalysts for direct methanol fuel cells: a short review, Applied Catalysis B: Environmental, 2018, 10.1016/j.apcatb.2018.06.029
  • 11. Jiayue Hu, Chunyang Zhai, Lixi Zeng, Yukou Du, Mingshan Zhu, Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO4-modified electrode under visible light irradiation, Catalysis Science & Technology, 2018, 10.1039/C8CY00864G
  • 12. Lihua He, Quanbin Liu, Shenjie Zhang, Xiangtian Zhang, Chunli Gong, Honghui Shu, Guangjin Wang, Hai Liu, Sheng Wen, Bingqing Zhang, High sensitivity of TiO 2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application, Electrochemistry Communications, 2018, 10.1016/j.elecom.2018.07.021
  • 13. Amit Kumar, Priya Rittika Thakur, Gaurav Sharma, Mu. Naushad, Anamika Rana, Genene Tessema Mola, Florian J. Stadler, Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications, Environmental Chemistry Letters, 2018, 10.1007/s10311-018-0814-8
  • 14. Wan Fadhilah Khalik, Li-Ngee Ho, Soon-An Ong, Chun-Hong Voon, Yee-Shian Wong, Sara Yasina Yusuf, Nik Athirah Yusoff, Sin-Li Lee, Enhancement of simultaneous batik wastewater treatment and electricity generation in photocatalytic fuel cell, Environmental Science and Pollution Research, 2018, 10.1007/s11356-018-3414-z
  • 15. Chunyang Zhai, Mingjuan Sun, Lixi Zeng, Mianqiang Xue, Jianguo Pan, Yukou Du, Mingshan Zhu, Construction of Pt/graphitic C3N4/MoS2 heterostructures on photo-enhanced electrocatalytic oxidation of small organic molecules, Applied Catalysis B: Environmental, 2019, 243, 283, 10.1016/j.apcatb.2018.10.047
  • 16. Noor Ahmed Nahyoon, Lifen Liu, Kané Rabé, Sarwan Ahmed Nahyoon, Azmat Hussain Abro, Fenglin Yang, Efficient degradation of rhodamine B with sustainable electricity generation in a photocatalytic fuel cell using visible light Ag3PO4/Fe/GTiP photoanode and ZnIn2S4 photocathode, Journal of the Taiwan Institute of Chemical Engineers, 2018, 10.1016/j.jtice.2018.10.019
  • 17. Y.H. Kwok, Y. Wang, M. Wu, F. Li, Y. Zhang, H. Zhang, D.Y.C. Leung, A dual fuel microfluidic fuel cell utilizing solar energy and methanol, Journal of Power Sources, 2019, 409, 58, 10.1016/j.jpowsour.2018.10.095
  • 18. Olivier Monfort, Olivier Monfort, Panagiotis Lianos, Gustav Plesch, , Photoelectrochemical Solar Cells, 2018, 219, 10.1002/9781119460008.ch6
  • 19. Ronald Vargas, David Carvajal, Brunella Galavis, Alberto Maimone, Lorean Madriz, Benjamín R. Scharifker, High-Field Growth of Semiconducting Anodic Oxide Films on Metal Surfaces for Photocatalytic Application, International Journal of Photoenergy, 2019, 2019, 1, 10.1155/2019/2571906
  • 20. Yuan Wang, Jiayue Hu, Chunyang Zhai, Haifeng Gao, Zhao-Qing Liu, Yukou Du, Mingshan Zhu, CdS Quantum Dots Sensitized 2D La2Ti2O7 Nanosheets as Support for Visible Light-Assisted Electrocatalytic Methanol Oxidation in Alkaline Medium, Energy Technology, 2019, 10.1002/ente.201800539
  • 21. Xin Chen, Rong Chen, Xun Zhu, Qiang Liao, Yuxin Zhang, Dingding Ye, Biao Zhang, Youxu Yu, Jinwang Li, A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity, Journal of Catalysis, 2019, 372, 182, 10.1016/j.jcat.2019.02.031
  • 22. Hao-Nan Wang, Xin Chen, Rong Chen, Xun Zhu, Qiang Liao, Ding-Ding Ye, Biao Zhang, You-Xu Yu, Wei Zhang, Jin-Wang Li, A ternary hybrid CuS/Cu2O/Cu nanowired photocathode for photocatalytic fuel cell, Journal of Power Sources, 2019, 435, 226766, 10.1016/j.jpowsour.2019.226766
  • 23. Prasenjit Bhunia, Kingshuk Dutta, , Green Photocatalysts for Energy and Environmental Process, 2020, Chapter 2, 19, 10.1007/978-3-030-17638-9_2
  • 24. Danilo Russo, Marica Muscetta, Laura Clarizia, Ilaria Di Somma, Corrado Garlisi, Raffaele Marotta, Giovanni Palmisano, Roberto Andreozzi, Photoactivated Fe(III)/Fe(II)/WO3–Pd fuel cell for electricity generation using synthetic and real effluents under visible light, Renewable Energy, 2019, 10.1016/j.renene.2019.09.080
  • 25. Bing Zhang, Fan Yang, Hongchen Liu, Linan Yan, Wang Yang, Chong Xu, Shuo Huang, Qi Li, Weijie Bao, Bei Liu, Yongfeng Li, Assembling graphene-encapsulated Pd/TiO2 nanosphere with hierarchical architecture for high performance visible-light assisted methanol electro-oxidation material, Industrial & Engineering Chemistry Research, 2019, 10.1021/acs.iecr.9b03619
  • 26. Jiayue Hu, Chunyang Zhai, Chaokai Yu, Lixi Zeng, Zhao-Qing Liu, Mingshan Zhu, Visible light-enhanced electrocatalytic alcohol oxidation based on two dimensional Pt-BiOBr nanocomposite, Journal of Colloid and Interface Science, 2018, 524, 195, 10.1016/j.jcis.2018.03.104
  • 27. Ronald Vargas, David Carvajal, Lorean Madriz, Benjamín R. Scharifker, Chemical kinetics in solar to chemical energy conversion: The photoelectrochemical oxygen transfer reaction, Energy Reports, 2019, 10.1016/j.egyr.2019.10.004
  • 28. Haifeng Gao, Chunyang Zhai, Chen Yuan, Zhao-Qing Liu, Mingshan Zhu, Snowflake-like Cu2S as visible-light-carrier for boosting Pd electrocatalytic ethylene glycol oxidation under visible light irradiation, Electrochimica Acta, 2019, 135214, 10.1016/j.electacta.2019.135214
  • 29. Hongbin Yu, Yanan Xue, Ying Lu, Xinhong Wang, Suiyi Zhu, Weichao Qin, Mingxin Huo, Novel application of a Z-scheme photocatalyst of Ag3PO4@g-C3N4 for photocatalytic fuel cells, Journal of Environmental Management, 2020, 254, 109738, 10.1016/j.jenvman.2019.109738
  • 30. Panagiotis Marios Adamopoulos, Ioannis Papagiannis, Dimitrios Raptis, Panagiotis Lianos, Photoelectrocatalytic Hydrogen Production Using a TiO2/WO3 Bilayer Photocatalyst in the Presence of Ethanol as a Fuel, Catalysts, 2019, 9, 12, 976, 10.3390/catal9120976
  • 31. Ioannis Papagiannis, Nikolaos Balis, Vassilios Dracopoulos, Panagiotis Lianos, Photoelectrocatalytic Hydrogen Peroxide Production Using Nanoparticulate WO3 as Photocatalyst and Glycerol or Ethanol as Sacrificial Agents, Processes, 2019, 8, 1, 37, 10.3390/pr8010037

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Panagiotis Lianos, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved