Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

In-situ AC electroosmotic and thermal perturbation effects for wide range of ionic strength

1 Department of Electrical Engineering, Microsystem Research Group, University of Bonab, Bonab 5551761167, Iran
2 Department of Electrical Engineering, Urmia University, Urmia 5756151818, Iran

Topical Section: Lab-on-a-Chip, Microfluidics & Microarrays

AC electrokinetic flow is promising in designing microfluidic chips for manipulation of biological and chemical samples toward clinical diagnostics. Four pieces of electrodes are optimized to enhance mixing effect inside a straight microchannel. In this research, the mixing dependency on the ionic strength of solutions is investigated. AC electroosmotic secondary flow is responsible for the mixing at low ionic strength (σ < 5 mS m–1), whereas AC electrothermal secondary flow is proposed to mix high conductive mediums (σ > 5 mS m–1). The electrode-electrolyte impedance analysis is employed to facilitate the in-situation mixing process by choosing appropriate electrical excitation parameters for the electrodes.
  Article Metrics

Keywords ac electroosmotic; ac electrothermal; chaotic regime; microfluidic; electric conductivity

Citation: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi. In-situ AC electroosmotic and thermal perturbation effects for wide range of ionic strength. AIMS Biophysics, 2017, 4(3): 451-464. doi: 10.3934/biophy.2017.3.451


  • 1. Kaajakari V (2009) Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems, Las Vegas, NV: Small Gear Publishing.
  • 2. Vafaie RH, Ghavifekr HB, Lintel HV, et al. (2016) Bi‐directional AC electrothermal micropump for on‐chip biological applications. Electrophoresis 37: 719–726.    
  • 3. Poorreza A, Vafaie RH, Mehdipoor M, et al. (2013) A microseparator based-on 4-phase travelling wave dielectrophoresis for Lab-on-a-chip applications. Indian J Pure Appl Phys 51: 506–515.
  • 4. Vafaie RH, Mehdipoor M, Pourmand A, et al. (2013) An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining. Biotechnol Bioprocess Eng 18: 594–605.    
  • 5. Nguyen NT, Wu Z (2004) Micromixers-a review. J Micromech Microeng 15: R1.
  • 6. He B, Burke BJ, Zhang X, et al. (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal Chem 73: 1942–1947.    
  • 7. Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulationsand optical study. Anal Chem 74: 4279–4286.    
  • 8. Ryu KS, Shaikh K, Goluch E, et al. (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4: 608–613.    
  • 9. Yang Z, Matsumoto S, Goto H, et al. (2001) Ultrasonic micromixer for microfluidic systems. Sensor Actuat A Phys 93: 266–272.    
  • 10. Français O, Jullien MC, Rousseau L, et al. (2007) An active chaotic micromixer integrating thermal actuation associating PDMS and silicon microtechnology. Arxiv preprint arXiv: 0711.3290.
  • 11. Morgan H, Green NG (2003) AC electrokinetics: Colloids and nanoparticles, Baldock, Hertfordshire: Research Study Press LTD.
  • 12. Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76: 3208–3213.    
  • 13. Fu LM, Yang RJ, Lin CH, et al. (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26: 1814–1824.    
  • 14. Meisel I, Ehrhard P (2006) Electrically-excited (electroosmotic) flows in microchannels for mixing applications. Eur J Mech B-Fluid 25: 491–504.    
  • 15. Chen CK, Cho CC (2008) Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluid Nanofluid 5: 785–793.    
  • 16. Yang CK, Chang JS, Chao SD, et al. (2007) Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect. Appl Phys Lett 91: 113904.    
  • 17. Sigurdson M, Wang D, Meinhart CD (2005) Electrothermal stirring for heterogeneous immunoassays. Lab Chip 5: 1366–1373.    
  • 18. Huang KR, Chang JS, Chao SD, et al. (2008) Simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. J Appl Phys 104: 064702.    
  • 19. Ramos A, Morgan H, Green NG, et al. (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31: 2338.    
  • 20. Zhu J, Xuan X (2009) Dielectrophoretic focusing of particles in a microchannel constriction using DC‐biased AC flectric fields. Electrophoresis 30: 2668–2675.    
  • 21. Williams SJ, Green NG (2015) Electrothermal pumping with interdigitated electrodes and resistive heaters. Electrophoresis 36: 1681–1689.    
  • 22. Vafaie RH, Ghavifekr HB (2017) Configurable ACET micro-manipulator for high conductive mediums by using a novel electrode engineering. Microsys Technol 23: 1393–1403.    
  • 23. Chang CC, Yang RJ (2004) Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. J Micromech Microeng 14: 550.    
  • 24. Probstein RF (2005) Physicochemical hydrodynamics: an introduction, John Wiley & Sons.
  • 25. Landau LD, Bell JS, Kearsley MJ, et al. (2013) Electrodynamics of continuous media, Elsevier.
  • 26. Lide DR (2004) CRC handbook of chemistry and physics, CRC press.
  • 27. Yuan Q, Yang K, Wu J (2014) Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluid Nanofluid 16: 167–178.    
  • 28. Chen JK, Yang RJ (2007) Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 28: 975–983.    
  • 29. Taguchi G, Chowdhury S, Wu Y (2005) Taguchi's quality engineering handbook, Wiley.
  • 30. Huang SH, Hsueh HJ, Hung KY (2010) Configurable AC electroosmotic generated in-plane microvortices and pumping flow in microchannels. Microfluid Nanofluid 8: 187–195.    
  • 31. Jorcin JB, Orazem ME, Pébère N, et al. (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51: 1473–1479.    
  • 32. Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18: 1883–1892.    


Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Reza Hadjiaghaie Vafaie, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved