Review

Understanding potato with the help of genomics

  • Received: 09 November 2016 Accepted: 27 December 2016 Published: 06 January 2017
  • Potato (Solanum tuberosum L.) is an important staple crop with a highly heterozygous and complex genome. Despite its cultural and economic significance, potato improvement efforts have been held back by the relative lack of genetic resources available to producers and breeders. The publication of the potato reference genome and advances in high-throughput sequencing technologies have led to the development of a wide range of genomic and transcriptomic resources. An overview these new tools, from the updated versions of the potato reference genome and transcriptome, to more recent gene expression, regulatory motif, re-sequencing and SNP genotyping analyses, paints a picture of modern potato research and how it will change our understanding of potato as well as other tuber producing Solanaceae.

    Citation: José Héctor Gálvez, Helen H. Tai, Noelle A. Barkley, Kyle Gardner, David Ellis, Martina V. Strömvik. Understanding potato with the help of genomics[J]. AIMS Agriculture and Food, 2017, 2(1): 16-39. doi: 10.3934/agrfood.2017.1.16

    Related Papers:

  • Potato (Solanum tuberosum L.) is an important staple crop with a highly heterozygous and complex genome. Despite its cultural and economic significance, potato improvement efforts have been held back by the relative lack of genetic resources available to producers and breeders. The publication of the potato reference genome and advances in high-throughput sequencing technologies have led to the development of a wide range of genomic and transcriptomic resources. An overview these new tools, from the updated versions of the potato reference genome and transcriptome, to more recent gene expression, regulatory motif, re-sequencing and SNP genotyping analyses, paints a picture of modern potato research and how it will change our understanding of potato as well as other tuber producing Solanaceae.


    加载中
    [1] Food and Agriculture Organization. Food and Agricultural commodities production / Commodities by regions. FAOSTAT, 2016. Available from: http://faostat3.fao.org/browse/rankings/commodities_by_regions/E
    [2] Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press.
    [3] Machida-Hirano R (2015) Diversity of potato genetic resources. Breed Sci 65: 26-40. doi: 10.1270/jsbbs.65.26
    [4] Ovchinnikova A, Krylova E, Gavrilenko T, et al. (2011) Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Bot J Linn Soc 165: 107-155. doi: 10.1111/j.1095-8339.2010.01107.x
    [5] Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89: 947-965. doi: 10.3732/ajb.89.6.947
    [6] Gebhardt C, Ballvora A, Walkemeier B, et al. (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13: 93-102. doi: 10.1023/B:MOLB.0000012878.89855.df
    [7] Simko I, Haynes KG, Jones RW (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173: 2237-2245. doi: 10.1534/genetics.106.060905
    [8] Douches DS, Jastrzebski K, Maas D, et al. (1996) Assessment of potato breeding over the past century. Crop Sci 36: 1544-1552. doi: 10.2135/cropsci1996.0011183X003600060024x
    [9] Iovene M, Zhang T, Lou Q, et al. (2013) Copy number variation in potato - An asexually propagated autotetraploid species. Plant J 75: 80-89. doi: 10.1111/tpj.12200
    [10] Hirsch CN, Hirsch CD, Felcher K, et al. (2013) Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3 3: 1003-1013.
    [11] Massa AN, Childs KL, Lin H, et al. (2011) The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44. PLoS One 6: 1-8.
    [12] The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475: 189-195. doi: 10.1038/nature10158
    [13] Sharma SK, Bolser D, de Boer J, et al. (2013) Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 3: 2031-2047. doi: 10.1534/g3.113.007153
    [14] Aversano R, Contaldi F, Ercolano MR, et al. (2015) The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives. Plant Cell 27: 954-968. doi: 10.1105/tpc.114.135954
    [15] The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635-641. doi: 10.1038/nature11119
    [16] Kim S, Park M, Yeom S-I, et al. (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46: 270-278. doi: 10.1038/ng.2877
    [17] Sierro N, Battey JND, Ouadi S, et al. (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5: 3833.
    [18] Bombarely A, Moser M, Amrad A, et al. (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants 2: 16074. doi: 10.1038/nplants.2016.74
    [19] Hardigan MA, Crisovan E, Hamilton JP, et al. (2016) Genome reduction uncovers a large dispensable genome and adaptive role for copy number variation in asexually propagated Solanum tuberosum. Plant Cell 28: 388-405. doi: 10.1105/tpc.15.00538
    [20] Luo R, Liu B, Xie Y, et al. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1: 18. doi: 10.1186/2047-217X-1-18
    [21] Crookshanks M, Emmersen J, Welinder KG, et al. (2001) The potato tuber transcriptome: analysis of 6077 expressed sequence tags. FEBS Lett 506: 123-126. doi: 10.1016/S0014-5793(01)02888-5
    [22] Ronning CM, Stegalkina SS, Ascenzi RA, et al. (2003) Comparative analyses of potato expressed sequence tag libraries. Plant Physiol 131: 419-429. doi: 10.1104/pp.013581
    [23] Flinn B, Rothwell C, Griffiths R, et al. (2005) Potato expressed sequence tag generation and analysis using standard and unique cDNA libraries. Plant Mol Biol 59: 407-433. doi: 10.1007/s11103-005-0185-y
    [24] Rensink W, Hart A, Liu J, et al. (2005) Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome 48: 598-605. doi: 10.1139/g05-034
    [25] Rensink WA, Lee Y, Liu J, et al. (2005) Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics 6: 124. doi: 10.1186/1471-2164-6-124
    [26] Kloosterman B, Vorst O, Hall RD, et al. (2005) Tuber on a chip: Differential gene expression during potato tuber development. Plant Biotechnol J 3: 505-519. doi: 10.1111/j.1467-7652.2005.00141.x
    [27] Rensink WA, Iobst S, Hart A, et al. (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5: 201-207. doi: 10.1007/s10142-005-0141-6
    [28] Kloosterman B, De Koeyer D, Griffiths R, et al. (2008) Genes driving potato tuber initiation and growth: Identification based on transcriptional changes using the POCI array. Funct Integr Genomics 8: 329-340. doi: 10.1007/s10142-008-0083-x
    [29] Bengtsson T, Weighill D, Proux-Wéra E, et al. (2014) Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics 15: 315. doi: 10.1186/1471-2164-15-315
    [30] Bachem C, Van Der Hoeven R, Lucker J, et al. (2000) Functional genomic analysis of potato tuber life-cycle. Potato Res 43: 297-312. doi: 10.1007/BF02360536
    [31] Campbell M, Segear E, Beers L, et al. (2008) Dormancy in potato tuber meristems: Chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 8: 317-328. doi: 10.1007/s10142-008-0079-6
    [32] Navarro C, Abelenda, JA, Cruz-Oró E, et al. (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478: 119-122. doi: 10.1038/nature10431
    [33] Restrepo S, Myers KL, del Pozo O, et al. (2005) Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol Plant Microb Interact 18: 913-922. doi: 10.1094/MPMI-18-0913
    [34] Tai HH, Goyer C, Platt HW, et al. (2013) Decreased defense gene expression in tolerance versus resistance to Verticillium dahliae in potato. Funct Integr Genomics 13: 367-378. doi: 10.1007/s10142-013-0329-0
    [35] Schafleitner R, Gutierrez Rosales RO, Gaudin A, et al. (2007) Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol Biochem 45: 673-690. doi: 10.1016/j.plaphy.2007.06.003
    [36] Ginzberg I, Barel G, Ophir R, et al. (2009) Transcriptomic profiling of heat-stress response in potato periderm. J Exp Bot 60: 4411-4421. doi: 10.1093/jxb/erp281
    [37] Evers D, Lefèvre I, Legay S, et al. (2010) Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J Exp Bot 61: 2327-2343. doi: 10.1093/jxb/erq060
    [38] Hancock RD, Morris WL, Ducreux LJM, et al. (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ 37: 439-450.
    [39] Hammond JP, Broadley MR, Bowen HC, et al. (2011) Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS One 6: e24606.
    [40] Trapnell C, Williams BA, Pertea G, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511-515. doi: 10.1038/nbt.1621
    [41] Swarbreck D, Wilks C, Lamesch P, et al. (2008) The Arabidopsis Information Resource (TAIR): Gene structure and function annotation. Nucleic Acids Res 36: 1009-1014.
    [42] Hazen SP, Wu Y, Kreps JA (2003) Gene expression profiling of plant responses to abiotic stress. Funct Integr Genomics 3: 105-111. doi: 10.1007/s10142-003-0088-4
    [43] Gálvez JH, Tai HH, Lagüe M, et al. (2016) The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs. Sci Rep 6: 26090.
    [44] Cho K, Cho KS, Sohn HB, et al. (2016) Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J Exp Bot 67: 1519-1533. doi: 10.1093/jxb/erv549
    [45] Liu B, Zhang N, Wen Y, et al. (2015) Transcriptomic changes during tuber dormancy release process revealed by RNA sequencing in potato. J Biotechnol 198: 17-30. doi: 10.1016/j.jbiotec.2015.01.019
    [46] Goyer A, Hamlin L, Crosslin JM, et al. (2015) RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of potato virus Y infection. BMC Genomics 16: 472. doi: 10.1186/s12864-015-1666-2
    [47] Frades I, Abreha KB, Proux-Wéra E, et al. (2015) A novel workflow correlating RNA-seq data to Phythophthora infestans resistance levels in wild Solanum species and potato clones. Front Plant Sci 6: 718.
    [48] Zhang N, Yang J, Wang Z, et al. (2014) Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS One 9: e95489. doi: 10.1371/journal.pone.0095489
    [49] Shan J, Song W, Zhou J, et al. (2013) Transcriptome analysis reveals novel genes potentially involved in photoperiodic tuberization in potato. Genomics 102: 388-396. doi: 10.1016/j.ygeno.2013.07.001
    [50] Gao L, Tu ZJ, Millett BP, et al. (2013) Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genomics 14: 340. doi: 10.1186/1471-2164-14-340
    [51] Zuluaga AP, Solé M, Lu H, et al. (2015) Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genomics 16: 246. doi: 10.1186/s12864-015-1460-1
    [52] Wheeler DL, Barrett T, Benson DA, et al. (2007) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 35: 5-12. doi: 10.1093/nar/gkl1031
    [53] Hirsch CD, Springer NM, Hirsch CN (2015) Genomic Limitations to RNAseq Expression Profiling. Plant J 84: 491-503. doi: 10.1111/tpj.13014
    [54] Ashburner M, Ball CA, Blake JA, et al. (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25: 25-29. doi: 10.1038/75556
    [55] Amar D, Frades I, Danek A, et al. (2014) Evaluation and integration of functional annotation pipelines for newly sequenced organisms: the potato genome as a test case. BMC Plant Biol 14: 1-14. doi: 10.1186/1471-2229-14-1
    [56] Ramšak Ž, Baebler Š, Rotter A, et al. (2014) GoMapMan: Integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucleic Acids Res 42: 1167-1175. doi: 10.1093/nar/gkt1056
    [57] Swinnen G, Goossens A, Pauwels L (2016) Lessons from Domestication: Targeting Cis-Regulatory Elements for Crop Improvement. Trends Plant Sci 21: 506-515. doi: 10.1016/j.tplants.2016.01.014
    [58] Konishi M, Yanagisawa S (2011) Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochem Biophys Res Commun 411: 708-713. doi: 10.1016/j.bbrc.2011.07.008
    [59] Liseron-Monfils C, Bi Y-M, Downs GS, et al. (2013) Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs. Plant Signal Behav 8: 1-14.
    [60] Pavesi G, Zambelli F, Pesole G (2007) WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences. BMC Bioinformatics 8: 46. doi: 10.1186/1471-2105-8-46
    [61] Korkuc P, Schippers JHM, Walther D (2014) Characterization and Identification of cis-Regulatory Elements in Arabidopsis Based on Single-Nucleotide Polymorphism Information. Plant Physiol 164: 181-200. doi: 10.1104/pp.113.229716
    [62] Sandelin A, Alkema W, Engström P, et al. (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32: D91-D94. doi: 10.1093/nar/gkh012
    [63] Mathelier A, Zhao X, Zhang AW, et al. (2014) JASPAR 2014: An extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42: 142-147.
    [64] Higo K, Ugawa Y, Iwamoto M, et al. (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27: 297-300. doi: 10.1093/nar/27.1.297
    [65] Aminedi R, Das N (2014) Class I patatin genes from potato (Solanum tuberosum L.) cultivars: molecular cloning, sequence comparison, prediction of diverse cis-regulatory motifs, and assessment of the promoter activities under field and in vitro conditions. Vitr Cell Dev Biol Plant 50: 673-687.
    [66] Chen M, Zhu WJ, You X, et al. (2015) Isolation and characterization of a chalcone isomerase gene promoter from potato cultivars. Genet Mol Res 14: 18872-18885. doi: 10.4238/2015.December.28.37
    [67] Bansal A, Kumari V, Taneja D, et al. (2012) Molecular cloning and characterization of granule-bound starch synthase I (GBSSI) alleles from potato and sequence analysis for detection of cis-regulatory motifs. Plant Cell Tissue Organ Cult 109: 247-261. doi: 10.1007/s11240-011-0090-9
    [68] Almasia NI, Narhirñak V, Hopp HE, et al. (2010) Isolation and characterization of the tissue and development-specific potato snakin-1 promoter inducible by temperature and wounding. Electron J Biotechnol 13: 1-21.
    [69] Trindade LM, Horvath B, Bachem C, et al. (2003) Isolation and functional characterization of a stolon specific promoter from potato (Solanum tuberosum L.). Gene 303: 77-87. doi: 10.1016/S0378-1119(02)01147-2
    [70] Ancillo G, Hoegen E, Kombrink E (2003) The promoter of the potato chitinase C gene directs expression to epidermal cells. Planta 217: 566-576. doi: 10.1007/s00425-003-1029-0
    [71] Despres C, Subramaniam R, Matton DP, et al. (1995) The Activation of the Potato Pr-Loa Gene Requires the Phosphorylation of the Nuclear Factor Pbf-1. Plant Cell 7: 589-598. doi: 10.1105/tpc.7.5.589
    [72] Konishi M, Yanagisawa S (2010) Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. Plant J 63: 269-282. doi: 10.1111/j.1365-313X.2010.04239.x
    [73] Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 4: 1617. doi: 10.1038/ncomms2621
    [74] Bailey TL, Boden M, Buske FA, et al. (2009) MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res 37: 202-208. doi: 10.1093/nar/gkp335
    [75] Fauteux F, Blanchette M, Strömvik MV (2008) Seeder: Discriminative seeding DNA motif discovery. Bioinformatics 24: 2303-2307. doi: 10.1093/bioinformatics/btn444
    [76] López Y, Patil A, Nakai K (2013) Identification of novel motif patterns to decipher the promoter architecture of co-expressed genes in Arabidopsis thaliana. BMC Syst Biol 7: S10.
    [77] Zolotarov Y, Strömvik M (2015) De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes. PLoS One 10: e0129016. doi: 10.1371/journal.pone.0129016
    [78] Spooner DM, Ghislain M, Simon R, et al. (2014) Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Bot Rev 80: 283-383. doi: 10.1007/s12229-014-9146-y
    [79] Spooner DM (2009). DNA barcoding will frequently fail in complicated groups: An example in wild potatoes. Am J Bot 96: 1177-1189. doi: 10.3732/ajb.0800246
    [80] Spooner DM, Núñez J, Trujillo G, et al. (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci U S A 104: 19398-19403. doi: 10.1073/pnas.0709796104
    [81] Ghislain M, Andrade D, Rodríguez F, et al. (2006) Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor Appl Genet 113: 1515-1527.
    [82] Hardigan MA, Bamberg J, Buell CR, et al. (2015) Taxonomy and Genetic Differentiation among Wild and Cultivated Germplasm of sect. Petota. Plant Genome 8: 1-16.
    [83] Abyzov A, Urban AE, Snyder M, et al. (2011) CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21: 974-984. doi: 10.1101/gr.114876.110
    [84] Chaisson MJP, Wilson RK, Eichler EE (2015) Genetic variation and the de novo assembly of human genomes. Nat Rev Genet 16: 627-640. doi: 10.1038/nrg3933
    [85] Pendleton M, Sebra R, Pang AWC, et al. (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 12: 780-786. doi: 10.1038/nmeth.3454
    [86] Aflitos S, Schijlen E, De Jong H, et al. (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80: 136-148. doi: 10.1111/tpj.12616
    [87] Ming R, VanBuren R, Wai CM, et al. (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47: 1435-1442. doi: 10.1038/ng.3435
    [88] Iorizzo M, Ellison S, Senalik D, et al. (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48: 657-666. doi: 10.1038/ng.3565
    [89] Mahesh HB, Shirke MD, Singh S, et al. (2016) Indica rice genome assembly, annotation and mining of blast disease resistance genes. BMC Genomics 17: 242. doi: 10.1186/s12864-016-2523-7
    [90] VanBuren R, Bryant D, Edger PP, et al. (2015) Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527: 508-511. doi: 10.1038/nature15714
    [91] Eisenstein M (2015) Startups use short-read data to expand long-read sequencing market. Nat Biotechnol 33: 433-435. doi: 10.1038/nbt0515-433
    [92] Putnam NH, Connell BO, Stites JC, et al. (2016) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26: 342-350. doi: 10.1101/gr.193474.115
    [93] Paajanen PM, Giolai M, Verweij W, et al. S. verrucosum, a Wild Mexican Potato As a Model Species for a Plant Genome Assembly Project. Plant and Animal Genome XXIV Conference, 2016. Available from: https://pag.confex.com/pag/xxiv/webprogram/Paper20356.html
    [94] Bredeson JV, Lyons JB, Prochnik SE, et al. (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34: 562-570. doi: 10.1038/nbt.3535
    [95] Michelmore R, Reyes Chin-Wo S, Kozik A, et al. Improvement of the Genome Assembly of Lettuce (Lactuca sativa) Using Dovetail/in vitro Proximity Ligation. Plant and Animal Genome XXIV Conference, 2016. Available from: https://pag.confex.com/pag/xxiv/webprogram/Paper22314.html
    [96] Reyes Chin-Wo S, Lavelle D, Truco MJ, et al. Dovetail/in vitro Proximity Ligation Data Facilitates Analysis of an Ancient Whole Genome Triplication Event in Lactuca sativa. Plant and Animal Genome XXIV Conference, 2016. Available from: https://pag.confex.com/pag/xxiv/webprogram/Paper19305.html
    [97] Schneeberger K, Ossowski S, Ott F, et al. (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 108: 10249-10254. doi: 10.1073/pnas.1107739108
    [98] Yao W, Li G, Zhao H, et al. (2015) Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol 16: 187. doi: 10.1186/s13059-015-0757-3
    [99] Johnston SA, den Nijs TPM, Peloquin SJ, et al. (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57: 5-9. doi: 10.1007/BF00276002
    [100] Rodríguez F, Spooner DM (2009) Nitrate Reductase Phylogeny of Potato (Solanum sect. Petota) Genomes with Emphasis on the Origins of the Polyploid Species. Syst Bot 34: 207-219.
    [101] Hanneman RE, Bamberg JB (1986) Inventory of tuber- bearing Solanum species. University of Wisconsin Press.
    [102] Micheletto S, Boland R, Huarte M (2000) Argentinian wild diploid Solanum species as sources of quantitative late blight resistance. Theor Appl Genet 101: 902-906. doi: 10.1007/s001220051560
    [103] Andolfo G, Jupe F, Witek K, et al. (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14: 120. doi: 10.1186/1471-2229-14-120
    [104] Alföldi J, Lindblad-Toh K (2013) Comparative genomics as a tool to understand evolution and disease. Genome Res 23: 1063-1068. doi: 10.1101/gr.157503.113
    [105] Uitdewilligen JGAML, Wolters AMA, D’hoop BB, et al. (2013) A Next- Generation Sequencing Method for Genotyping-by-Sequencing of Highly Heterozygous Autotetraploid Potato. PLoS One 8: 10-14.
    [106] De Donato M, Peters SO, Mitchell SE, et al. (2013) Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next- generation sequencing. PLoS One 8: e62137. doi: 10.1371/journal.pone.0062137
    [107] Felcher KJ, Coombs JJ, Massa AN, et al. (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One 7: e36347. doi: 10.1371/journal.pone.0036347
    [108] Anithakumari AM, Tang J, van Eck HJ, et al. (2010) A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed 26: 65-75. doi: 10.1007/s11032-009-9377-5
    [109] Hamilton JP, Hansey CN, Whitty BR, et al. (2011) Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics 12: 302. doi: 10.1186/1471-2164-12-302
    [110] Massa AN, Manrique-Carpintero NC, Coombs JJ, et al. (2015) Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.). G3 5: 2357-2364. doi: 10.1534/g3.115.019646
    [111] Manrique-Carpintero NC, Coombs JJ, Cui Y, et al. (2015) Genetic map and QTL analysis of agronomic traits in a diploid potato population using single nucleotide polymorphism markers. Crop Sci 55: 2566-2579. doi: 10.2135/cropsci2014.10.0745
    [112] Manrique-Carpintero NC, Coombs JJ, Veilleux RE, et al. (2016) Comparative Analysis of Regions with Distorted Segregation in Three Diploid Populations of Potato. G3 6: 2617-2628. doi: 10.1534/g3.116.030031
    [113] Endelman JB, Jansky SH (2016) Genetic mapping with an inbred line-derived F2 population in potato. Theor Appl Genet 129: 935-943. doi: 10.1007/s00122-016-2673-7
    [114] Vos PG, Uitdewilligen JGAML, Voorrips RE, et al. (2015) Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet 128: 2387-2401. doi: 10.1007/s00122-015-2593-y
    [115] Elshire RJ, Glaubitz JC, Sun Q, et al. (2011) A robust, simple genotyping-by- sequencing (GBS) approach for high diversity species. PLoS One 6: e19379. doi: 10.1371/journal.pone.0019379
    [116] Baird NA, Etter PD, Atwood TS, et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3: e3376. doi: 10.1371/journal.pone.0003376
    [117] Bradbury PJ, Zhang Z, Kroon DE, et al. (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633-2635. doi: 10.1093/bioinformatics/btm308
    [118] Glaubitz JC, Casstevens TM, Lu F, et al. (2014) TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS One 9: e90346
    [119] Lu F, Lipka AE, Glaubitz J, et al. (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9: e1003215. doi: 10.1371/journal.pgen.1003215
    [120] Catchen JM, Amores A, Hohenlohe P, et al. (2011) Stacks: building and genotyping Loci de novo from short-read sequences. G3 1: 171-182. doi: 10.1534/g3.111.000240
    [121] Tinker NA, Bekele WA, Hattori J (2016) Haplotag: Software for Haplotype- Based Genotyping-by-Sequencing Analysis. G3 6: 857-863. doi: 10.1534/g3.115.024596
    [122] Melo ATO, Bartaula R, Hale I (2016) GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinformatics 17: 29. doi: 10.1186/s12859-016-0879-y
    [123] Poland JA, Brown PJ, Sorrells ME, et al. (2012) Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by- Sequencing Approach. PLoS One 7: e32253. doi: 10.1371/journal.pone.0032253
    [124] Rocher S, Jean M, Castonguay Y, et al. (2015) Validation of genotyping-by- sequencing analysis in populations of tetraploid alfalfa by 454 sequencing. PLoS One 10: e0131918. doi: 10.1371/journal.pone.0131918
    [125] Labate JA, Robertson LD, Strickler SR, et al. (2014) Genetic structure of the four wild tomato species in the Solanum peruvianum s.l. species complex. Genome 57: 169-180.
    [126] Endelman J. Genotyping-By-Sequencing of a Diploid Potato F2 Population. Plant and Animal Genome XXIII, 2015. Available from: https://pag.confex.com/pag/xxiii/webprogram/Paper15683.html
    [127] Barone A (2004) Molecular marker-assisted selection for potato breeding. Am J Potato Res 81: 111-117. doi: 10.1007/BF02853608
    [128] Tiwari JK, Siddappa S, Singh BP, et al. (2013) Molecular markers for late blight resistance breeding of potato: an update. Plant Breed 132: 237-245. doi: 10.1111/pbr.12053
    [129] Song Y-S, Hepting L, Schweizer G, et al. (2005) Mapping of extreme resistance to PVY (Ry sto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theor Appl Genet 111: 879-887. doi: 10.1007/s00122-005-0010-7
    [130] Gebhardt C, Bellin D, Henselewski H, et al. (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112: 1458-1464. doi: 10.1007/s00122-006-0248-8
    [131] Fulladolsa AC, Navarro FM, Kota R, et al. (2015) Application of Marker Assisted Selection for Potato Virus Y Resistance in the University of Wisconsin Potato Breeding Program. Am J Potato Res 92: 444-450. doi: 10.1007/s12230-015-9431-2
    [132] Nie X, Sutherland D, Dickison V, et al. (2016) Development and Validation of High- Resolution Melting Markers Derived from Ry sto STS Markers for High-Throughput Marker-Assisted Selection of Potato Carrying Ry sto. Phytopathology 106: 1366-1375. doi: 10.1094/PHYTO-05-16-0204-R
    [133] Ritter E, Debener T, Barone A, et al. (1991) RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol Gen Genet 227: 81-85. doi: 10.1007/BF00260710
    [134] Simko I, Haynes KG, Ewing EE, et al. (2004) Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Mol Genet Genomics 271: 522-531. doi: 10.1007/s00438-004-1010-z
    [135] Uribe P, Jansky S, Halterman D (2014) Two CAPS markers predict Verticillium wilt resistance in wild Solanum species. Mol Breed 33: 465-476. doi: 10.1007/s11032-013-9965-2
    [136] Li L, Tacke E, Hofferbert H-R, et al. (2013) Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor Appl Genet 126: 1039-1052. doi: 10.1007/s00122-012-2035-z
    [137] Schönhals EM, Ortega F, Barandalla L, et al. (2016). Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.). Theor Appl Genet 129: 767-785. doi: 10.1007/s00122-016-2665-7
    [138] Slater AT, Cogan NOI, Forster JW, et al. (2016) Improving Genetic Gain with Genomic Selection in Autotetraploid Potato. Plant Genome 9: 1-15.
    [139] Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14: 1941-1955. doi: 10.1111/pbi.12559
    [140] Bansal V (2010) A statistical method for the detection of variants from next-generation resequencing of DNA pools. Bioinformatics 26: i318-i324. doi: 10.1093/bioinformatics/btq214
    [141] Kaminski KP, Kørup K, Andersen MN, et al. (2016) Next Generation Sequencing Bulk Segregant Analysis of Potato Support that Differential Flux into the Cholesterol and Stigmasterol Metabolite Pools Is Important for Steroidal Glycoalkaloid Content. Potato Res 59: 81-97. doi: 10.1007/s11540-015-9314-4
    [142] Hirsch CD, Hamilton JP, Childs KL, et al. (2014) Spud DB: A Resource for Mining Sequences, Genotypes, and Phenotypes to Accelerate Potato Breeding. Plant Genome 7: 1-12.
    [143] Brazma A, Parkinson H, Sarkans U, et al. (2003) ArrayExpress - A public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31: 68-71. doi: 10.1093/nar/gkg091
    [144] Meyer S, Nagel A, Gebhardt C (2005) PoMaMo — a comprehensive database for potato genome data. Nucleic Acids Res 33: 666-670.
    [145] Fernandez-Pozo N, Menda N, Edwards JD, et al. (2014) The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res 43: 1-6.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10613) PDF downloads(2146) Cited by(10)

Article outline

Figures and Tables

Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog