Citation: Janina Engel, Markus Wahl, Rudi Zagst. Forecasting turbulence in the Asian and European stock market using regime-switching models[J]. Quantitative Finance and Economics, 2018, 2(2): 388-406. doi: 10.3934/QFE.2018.2.388
[1] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304 |
[2] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . An age-structured epidemic model with boosting and waning of immune status. Mathematical Biosciences and Engineering, 2021, 18(5): 5707-5736. doi: 10.3934/mbe.2021289 |
[3] | Toshikazu Kuniya, Hisashi Inaba . Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity. Mathematical Biosciences and Engineering, 2023, 20(7): 13036-13060. doi: 10.3934/mbe.2023581 |
[4] | Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297 |
[5] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[6] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[7] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[8] | Hui Cao, Dongxue Yan, Ao Li . Dynamic analysis of the recurrent epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 5972-5990. doi: 10.3934/mbe.2019299 |
[9] | Wenjie Qin, Jiamin Zhang, Zhengjun Dong . Media impact research: a discrete SIR epidemic model with threshold switching and nonlinear infection forces. Mathematical Biosciences and Engineering, 2023, 20(10): 17783-17802. doi: 10.3934/mbe.2023790 |
[10] | Toshikazu Kuniya, Mimmo Iannelli . and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences and Engineering, 2014, 11(4): 929-945. doi: 10.3934/mbe.2014.11.929 |
[1] | Abiad A (2003) Early-warning systems: a survey and a regime-switching approach. IMF Work Paper 32. |
[2] |
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19: 716–723. doi: 10.1109/TAC.1974.1100705
![]() |
[3] |
Barrell R, Davis P, Karim D, et al. (2010) Bank regulation, property prices and early warning systems for banking crises in OECD countries. J Bank Financ 34: 2255–2264. doi: 10.1016/j.jbankfin.2010.02.015
![]() |
[4] |
Baum L, Petrie T, Soules G, et al. (1970) A maximization technique occuring in the statistical analysis of probabilitistic functions of Markov chains. Ann Math Stat 41: 164–171. doi: 10.1214/aoms/1177697196
![]() |
[5] | Brockwell P, Davis R (1991) Time Series: Theory and Method. 2 Eds., New York: Springer. |
[6] |
Chen S (2009) Predicting the bear stock market: Macroeconomic variablesas leading indicators. J Bank Financ 33: 211–223. doi: 10.1016/j.jbankfin.2008.07.013
![]() |
[7] |
Davis P, Karim D (2008) Comparing early warning systems for banking crises. J Financ Stabil 4: 89–120. doi: 10.1016/j.jfs.2007.12.004
![]() |
[8] |
Davis P, Karim D (2008) Could early warning systems have helped to predict the sub-prime crisis? Natl Inst Econ Rev 206: 35–47. doi: 10.1177/0027950108099841
![]() |
[9] | Demirg¨uc-Kunt A, Detragiache E (2005) Cross-country empirical studies of systemic bank distress: a survey. IMF Working Paper 05. |
[10] | Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser 39: 1–38. |
[11] | Diebold F, Lee J, Weinbach G (1989) Regime switching with time-varying transition probabilities. Feder Reserv Bank Philad Work Paper 93: 183–302. |
[12] | Duttagupta R, Cashin P (2008) The anatomy of banking crises. IMF Working Paper 08. |
[13] |
Hamilton J (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57: 357–384. doi: 10.2307/1912559
![]() |
[14] | Hamilton J (1994) Time Series Analysis. Princeton: Princeton University Press. |
[15] | Hauptmann J, Zagst R (2011) Systemic risk. In: Wu, D. W., Quant Financ Risk Management , Berlin: Springer, 18: 321–338. |
[16] |
Hauptmann J, Hoppenkamps A, Min A, et al. (2014) Forecasting market turbulence using regimeswitching models. Financ Mark Portf Management 28: 139–164. doi: 10.1007/s11408-014-0226-0
![]() |
[17] | Kamin S, Schindler J, Samuel S (2001) The contribution of domestic and external factors to emerging market devaluation crises: an early warning systems approach. FRB Int Financ Discuss Paper 711. |
[18] | Kaminsky G, Reinhart C (1996) The Twin Crises: The Causes of Banking and Balance-of-Payments Problems. FRB Int Financ Discuss Paper 544. |
[19] |
Lahiri K, Wang JG (1994) Predicting cyclical turning points with leading index in a markov switching model. J Forecasting 13: 245–263. doi: 10.1002/for.3980130302
![]() |
[20] |
Li WX, Chen C, French J (2015) Toward an early warning system of financial crises: What can indexfutures and options tell us? Q Rev Econ Financ 55: 87–99. doi: 10.1016/j.qref.2014.07.004
![]() |
[21] | Maheu M, McCurdy T (2000) Identifying bull and bear markets in stock returns. J Bus Econ Stat 18: 100–112. |
[22] |
Martinez-Peria M (2002) A regime-switching approach to the study of speculative attacks: a focus on EMS crises. Empir Econom 27: 299–334. doi: 10.1007/s001810100102
![]() |
[23] |
Meichle M, Ranaldo A, Zanetti A (2011) Do financial variables help predict the state of the business cycle in small open economies? Evidence from Switzerland. Financ Mark Portf Manag 25: 435– 453. doi: 10.1007/s11408-011-0173-y
![]() |
[24] | Shao J (2003) Mathematical Statistics. 2 Eds., New York: Springer. |
[25] |
Timmermann A (2000) Moments of Markov switching models. J Econ 96: 75–111. doi: 10.1016/S0304-4076(99)00051-2
![]() |
[26] |
Wecker WE (1979) Predicting the Turning Points of a Time Series. J Bus 52: 35–50. doi: 10.1086/296032
![]() |
1. | Dimitri Breda, Odo Diekmann, Stefano Maset, Rossana Vermiglio, A numerical approach for investigating the stability of equilibria for structured population models, 2013, 7, 1751-3758, 4, 10.1080/17513758.2013.789562 | |
2. | Toshikazu Kuniya, Global Behavior of a Multi-Group SIR Epidemic Model with Age Structure and an Application to the Chlamydia Epidemic in Japan, 2019, 79, 0036-1399, 321, 10.1137/18M1205947 | |
3. | Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109 | |
4. | Mimmo Iannelli, Fabio Milner, 2017, Chapter 10, 978-94-024-1145-4, 277, 10.1007/978-94-024-1146-1_10 | |
5. | Toshikazu Kuniya, Stability Analysis of an Age-Structured SIR Epidemic Model with a Reduction Method to ODEs, 2018, 6, 2227-7390, 147, 10.3390/math6090147 | |
6. | Hisashi Inaba, 2017, Chapter 6, 978-981-10-0187-1, 287, 10.1007/978-981-10-0188-8_6 | |
7. | Xue-Zhi Li, Junyuan Yang, Maia Martcheva, 2020, Chapter 1, 978-3-030-42495-4, 1, 10.1007/978-3-030-42496-1_1 | |
8. | Toshikazu Kuniya, Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients, 2014, 27, 08939659, 15, 10.1016/j.aml.2013.08.008 | |
9. | D.H. Knipl, G. Röst, Large number of endemic equilibria for disease transmission models in patchy environment, 2014, 258, 00255564, 201, 10.1016/j.mbs.2014.08.012 | |
10. | Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039 | |
11. | Toshikazu Kuniya, Hopf bifurcation in an age-structured SIR epidemic model, 2019, 92, 08939659, 22, 10.1016/j.aml.2018.12.010 | |
12. | Toshikazu Kuniya, Structure of epidemic models: toward further applications in economics, 2021, 72, 1352-4739, 581, 10.1007/s42973-021-00094-8 | |
13. | Toshikazu Kuniya, Hisashi Inaba, Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity, 2023, 20, 1551-0018, 13036, 10.3934/mbe.2023581 | |
14. | Wenxuan Li, Suli Liu, Dynamic analysis of a stochastic epidemic model incorporating the double epidemic hypothesis and Crowley-Martin incidence term, 2023, 31, 2688-1594, 6134, 10.3934/era.2023312 | |
15. | Daisuke Fujii, Taisuke Nakata, Takeshi Ojima, Martial L Ndeffo-Mbah, Heterogeneous risk attitudes and waves of infection, 2024, 19, 1932-6203, e0299813, 10.1371/journal.pone.0299813 | |
16. | Nurbek Azimaqin, Xianning Liu, Yangjiang Wei, Yingke Li, Explicit Formula of the Basic Reproduction Number for Heterogeneous Age‐Structured SIR Epidemic Model, 2025, 0170-4214, 10.1002/mma.10994 | |
17. | A. Peker-Dobie, Manipulating the Hopf and Generalized Hopf Bifurcations in an Epidemic Model via Braga’s Methodology, 2025, 35, 0218-1274, 10.1142/S0218127425500932 |