Review Topical Sections

The interaction between language and working memory: a systematic review of fMRI studies in the past two decades

  • Zoha Deldar and Carlos Gevers-Montoro contributed equally to this work

  • Received: 03 September 2020 Accepted: 10 November 2020 Published: 16 November 2020
  • Language processing involves other cognitive domains, including Working Memory (WM). Much detail about the neural correlates of language and WM interaction remains unclear. This review summarizes the evidence for the interaction between WM and language obtained via functional Magnetic Resonance Imaging (fMRI) in the past two decades. The search was limited to PubMed, Google Scholar, Science direct and Neurosynth for working memory, language, fMRI, neuroimaging, cognition, attention, network, connectome keywords. The exclusion criteria consisted of studies including children, older adults, bilingual or multilingual population, clinical cases, music, sign language, speech, motor processing, review papers, meta-analyses, electroencephalography/event-related potential, and positron emission tomography. A total of 20 articles were included and discussed in four categories: language comprehension, language production, syntax, and networks. Studies on neural correlates of WM and language interaction are rare. Language tasks that involve WM activate common neural systems. Activated areas can be associated with cognitive concepts proposed by Baddeley and Hitch (1974), including the phonological loop of WM (mainly Broca and Wernicke's areas), other prefrontal cortex and right hemispheric regions linked to the visuospatial sketchpad. There is a clear, dynamic interaction between language and WM, reflected in the involvement of subcortical structures, particularly the basal ganglia (caudate), and of widespread right hemispheric regions. WM involvement is levered by cognitive demand in response to task complexity. High WM capacity readers draw upon buffer memory systems in midline cortical areas to decrease the WM demands for efficiency. Different dynamic networks are involved in WM and language interaction in response to the task in hand for an ultimate brain function efficiency, modulated by language modality and attention.

    Citation: Zoha Deldar, Carlos Gevers-Montoro, Ali Khatibi, Ladan Ghazi-Saidi. The interaction between language and working memory: a systematic review of fMRI studies in the past two decades[J]. AIMS Neuroscience, 2021, 8(1): 1-32. doi: 10.3934/Neuroscience.2021001

    Related Papers:

  • Language processing involves other cognitive domains, including Working Memory (WM). Much detail about the neural correlates of language and WM interaction remains unclear. This review summarizes the evidence for the interaction between WM and language obtained via functional Magnetic Resonance Imaging (fMRI) in the past two decades. The search was limited to PubMed, Google Scholar, Science direct and Neurosynth for working memory, language, fMRI, neuroimaging, cognition, attention, network, connectome keywords. The exclusion criteria consisted of studies including children, older adults, bilingual or multilingual population, clinical cases, music, sign language, speech, motor processing, review papers, meta-analyses, electroencephalography/event-related potential, and positron emission tomography. A total of 20 articles were included and discussed in four categories: language comprehension, language production, syntax, and networks. Studies on neural correlates of WM and language interaction are rare. Language tasks that involve WM activate common neural systems. Activated areas can be associated with cognitive concepts proposed by Baddeley and Hitch (1974), including the phonological loop of WM (mainly Broca and Wernicke's areas), other prefrontal cortex and right hemispheric regions linked to the visuospatial sketchpad. There is a clear, dynamic interaction between language and WM, reflected in the involvement of subcortical structures, particularly the basal ganglia (caudate), and of widespread right hemispheric regions. WM involvement is levered by cognitive demand in response to task complexity. High WM capacity readers draw upon buffer memory systems in midline cortical areas to decrease the WM demands for efficiency. Different dynamic networks are involved in WM and language interaction in response to the task in hand for an ultimate brain function efficiency, modulated by language modality and attention.


    加载中

    Abbreviation WM: Working memory; fMRI: functional Magnetic Resonance Imaging; IFG: Inferior Frontal Gyrus; BA: Brodmann area; STG: Superior Temporal Gyrus; SMA: Supplementary motor area; Pre-SMA: Pre-Supplementary motor area; AF: Arcuate Fasciculus; DLPFC: Dorsolateral prefrontal cortex; ACC: Anterior cingulate cortex; DMN: Default-Mode network; EEG/ERP: Electroencephalography/Event-Related potential; PET: Positron Emission Tomography; MTG: Middle Temporal Gyrus; PCC: Posterior cingulate cortex; OFC: Orbitofrontal cortex; MD: Multiple demand;

    Conflicts of interest



    The authors declare no competing interests and no relationship that may lead to any conflict of interest.

    1 The n-back task is administered broadly to study WM. The task consists of a list of visual or auditory stimuli that is presented to participants. They are instructed to indicate whether each stimulus is a correct match with the nth stimulus presented before. The n-back task demands constantly storing, updating information and inhibiting distractors. The cognitive load can be altered in this task by changing the value of n, which correspondingly may affect accuracy and reaction times. In the n-back task, visual or auditory stimuli are stored in the phonological loop or visuospatial sketchpad loop while selecting the correct answer depends on the central executive function. The central executive function is responsible for updating information and inhibiting the processing of irrelevant information. Brain functions linked to different types of WM (such as visuospatial WM) can be examined by using n-back tasks.

    2 The WM span tasks are divided into two main categories: simple and complex span tasks. The simple span task requires encoding a list of items (e.g., words) and maintaining that information during short delay periods and then recalling them. On the other hand, the complex span task includes presenting a list of items and asking participants to memorize them while performing another cognitive task (e.g., mathematics problem-solving, reading) and then recalling them. Performing the distractive task while maintaining task-relevant information makes the maintaining phase more difficult by directing attention towards task-irrelevant information. The span tasks, particularly complex span tasks, need storing, updating information and inhibiting distractors.

    [1] Aitchison J (1999)  Linguistics England, UK: The McGraw-Hill Companies, Inc., 50-150.
    [2] Fromkin V, Rodman R, Hyams NM (2003)  An introduction to language Boston: Thomson, Wadsworth, 69-329.
    [3] Parker F, Riley KL (2005)  Linguistics for non-linguists: a primer with exercises Boston, Mass: Allyn and Bacon, 12-137.
    [4] Finch G (2005)  Key concepts in language and linguistics: Palgrave Macmillan. 31-40.
    [5] Field J (2003)  Psycholinguistics: A resource book for students: Psychology Press London: Routledge.
    [6] Fromkin V, Rodman R, Hyams N (2018)  An introduction to language Wadsworth: Cengage Learning, 4-270.
    [7] Ghazi Saidi L, Perlbarg V, Marrelec G, et al. (2013) Functional connectivity changes in second language vocabulary learning. Brain Lang 124: 56-65. doi: 10.1016/j.bandl.2012.11.008
    [8] Ghazi-Saidi L, Ansaldo AI (2017) Second Language Word Learning through Repetition and Imitation: Functional Networks as a Function of Learning Phase and Language Distance. Front Hum Neurosci 11: 463. doi: 10.3389/fnhum.2017.00463
    [9] Parker F, Riley KL, Riley KL (2005)  Grammar for grammarians: prescriptive, descriptive, generative, contextual Chicago: Parlay Press, 12-137.
    [10] Fromkin V, Rodman R (1988)  An introduction to language New York: Holt, Rinehart, and Winston, 69-329.
    [11] Yule G (1996)  The study of language Cambridge England: Cambridge University Press, 25-156.
    [12] Falk JS (1978)  ERIC Clearinghouse on Languages and Linguistics. Language and linguistics: bases for a curriculum Arlington Va: Center for Applied Linguistics, 5-12.
    [13] Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8: 393-402. doi: 10.1038/nrn2113
    [14] Poeppel D, Idsardi WJ, Van Wassenhove V (2008) Speech perception at the interface of neurobiology and linguistics. Philos Trans R Soc Lond B Biol Sci 363: 1071-1086. doi: 10.1098/rstb.2007.2160
    [15] Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191: 62-88. doi: 10.1111/j.1749-6632.2010.05444.x
    [16] Buchweitz A, Mason RA, Tomitch LM, et al. (2009) Brain activation for reading and listening comprehension: An fMRI study of modality effects and individual differences in language comprehension. Psychol Neurosci 2: 111-123. doi: 10.3922/j.psns.2009.2.003
    [17] Keller TA, Carpenter PA, Just MA (2001) The neural bases of sentence comprehension: a fMRI examination of syntactic and lexical processing. Cereb Cortex 11: 223-237. doi: 10.1093/cercor/11.3.223
    [18] Obler LK, Gjerlow K (1999)  Language and the brain Cambridge, UK; New York: Cambridge University Press, 141-156.
    [19] Banich MT, Mack MA (2003)  Mind, brain, and language: multidisciplinary perspectives Mahwah, NJ: L Erlbaum Associates, 23-61.
    [20] Tan LH, Laird AR, Li K, et al. (2005) Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum Brain Mapp 25: 83-91. doi: 10.1002/hbm.20134
    [21] Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197: 335-359. doi: 10.1046/j.1469-7580.2000.19730335.x
    [22] Hill VB, Cankurtaran CZ, Liu BP, et al. (2019) A Practical Review of Functional MRI Anatomy of the Language and Motor Systems. Am J Neuroradiol 40: 1084-1090. doi: 10.3174/ajnr.A6089
    [23] Gordon EM, Laumann TO, Marek S, et al. (2020) Default-mode network streams for coupling to language and control systems. Proc Natl Acad Sci U S A 117: 17308-17319. doi: 10.1073/pnas.2005238117
    [24] Liberman P (2000)  Human Languages and our brain: The subcortical bases of speech, syntax and thought Cambridge: Harvard University Press.
    [25] Lopes TM, Yasuda CL, Campos BM, et al. (2016) Effects of task complexity on activation of language areas in a semantic decision fMRI protocol. Neuropsychologia 81: 140-148. doi: 10.1016/j.neuropsychologia.2015.12.020
    [26] Krings T, Topper R, Foltys H, et al. (2000) Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci Lett 278: 189-193. doi: 10.1016/S0304-3940(99)00930-1
    [27] Carey JR, Bhatt E, Nagpal A (2005) Neuroplasticity promoted by task complexity. Exerc Sport Sci Rev 33: 24-31.
    [28] van de Ven V, Esposito F, Christoffels IK (2009) Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study. Neuroimage 47: 1982-1991. doi: 10.1016/j.neuroimage.2009.05.057
    [29] Bitan T, Booth JR, Choy J, et al. (2005) Shifts of effective connectivity within a language network during rhyming and spelling. J Neurosci 25: 5397-5403. doi: 10.1523/JNEUROSCI.0864-05.2005
    [30] Just MA, Newman SD, Keller TA, et al. (2004) Imagery in sentence comprehension: an fMRI study. Neuroimage 21: 112-124. doi: 10.1016/j.neuroimage.2003.08.042
    [31] Warren JE, Crinion JT, Lambon Ralph MA, et al. (2009) Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain 132: 3428-3442. doi: 10.1093/brain/awp270
    [32] Leff AP, Schofield TM, Stephan KE, et al. (2008) The cortical dynamics of intelligible speech. J Neurosci 28: 13209-13215. doi: 10.1523/JNEUROSCI.2903-08.2008
    [33] Vitali P, Abutalebi J, Tettamanti M, et al. (2007) Training-induced brain remapping in chronic aphasia: a pilot study. Neurorehabil Neural Repair 21: 152-160. doi: 10.1177/1545968306294735
    [34] Meinzer M, Flaisch T, Obleser J, et al. (2006) Brain regions essential for improved lexical access in an aged aphasic patient: a case report. BMC Neurol 6: 28. doi: 10.1186/1471-2377-6-28
    [35] Hillis AE, Kleinman JT, Newhart M, et al. (2006) Restoring cerebral blood flow reveals neural regions critical for naming. J Neurosci 26: 8069-8073. doi: 10.1523/JNEUROSCI.2088-06.2006
    [36] Marsh EB, Hillis AE (2005) Cognitive and neural mechanisms underlying reading and naming: evidence from letter-by-letter reading and optic aphasia. Neurocase 11: 325-337. doi: 10.1080/13554790591006320
    [37] Kan IP, Thompson-Schill SL (2004) Effect of name agreement on prefrontal activity during overt and covert picture naming. Cogn Affect Behav Neurosci 4: 43-57. doi: 10.3758/CABN.4.1.43
    [38] Leger A, Demonet JF, Ruff S, et al. (2002) Neural substrates of spoken language rehabilitation in an aphasic patient: an fMRI study. Neuroimage 17: 174-183. doi: 10.1006/nimg.2002.1238
    [39] Gotts SJ, della Rocchetta AI, Cipolotti L (2002) Mechanisms underlying perseveration in aphasia: evidence from a single case study. Neuropsychologia 40: 1930-1947. doi: 10.1016/S0028-3932(02)00067-2
    [40] Arevalo A, Perani D, Cappa SF, et al. (2007) Action and object processing in aphasia: from nouns and verbs to the effect of manipulability. Brain Lang 100: 79-94. doi: 10.1016/j.bandl.2006.06.012
    [41] Duffau H (2008) The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia 46: 927-934. doi: 10.1016/j.neuropsychologia.2007.10.025
    [42] Baddeley A (2012) Working memory: theories, models, and controversies. Annu Rev Psychol 63: 1-29. doi: 10.1146/annurev-psych-120710-100422
    [43] Diamond A (2013) Executive functions. Annu Rev Psychol 64: 135-168. doi: 10.1146/annurev-psych-113011-143750
    [44] Baddeley AD, Hitch G (1974) Working memory. Psychology of learning and motivation Elsevier: Academic Press, 47-89. doi: 10.1016/S0079-7421(08)60452-1
    [45] D'Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66: 115-142. doi: 10.1146/annurev-psych-010814-015031
    [46] De Fockert JW (2013) Beyond perceptual load and dilution: a review of the role of working memory in selective attention. Front Psychol 4: 287. doi: 10.3389/fpsyg.2013.00287
    [47] Fougnie D, Marois R (2009) Attentive Tracking Disrupts Feature Binding in Visual Working Memory. Vis Cogn 17: 48-66. doi: 10.1080/13506280802281337
    [48] Dowd EW (2016)  Memory-Based Attentional Guidance: A Window to the Relationship between Working Memory and Attention, Doctoral dissertation: Duke University. 6-23.
    [49] Pennington BF, Bennetto L, McAleer O, et al. (1996)  Executive functions and working memory: Theoretical and measurement issues.
    [50] Zillmer E, Spiers M, Culbertson WC (2001)  Principles of neuropsychology Belmont CA: Wadsworth Pub Co, 606.
    [51] Cowan N (1995)  Attention and memory: an integrated framework New York: Oxford University Press.
    [52] Ericsson KA, Kintsch W (1995) Long-term working memory. Psychol Rev 102: 211-245. doi: 10.1037/0033-295X.102.2.211
    [53] Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4: 829-839. doi: 10.1038/nrn1201
    [54] Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139: 23-38. doi: 10.1016/j.neuroscience.2005.06.005
    [55] Woodman GF, Vogel EK (2005) Fractionating working memory: consolidation and maintenance are independent processes. Psychol Sci 16: 106-113. doi: 10.1111/j.0956-7976.2005.00790.x
    [56] Fuster JM (1997)  The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe Philadelphia: Lippincott-Raven.
    [57] Cowan N (2017) The many faces of working memory and short-term storage. Psychon Bull Rev 24: 1158-1170. doi: 10.3758/s13423-016-1191-6
    [58] Miyake A, Shah P (1999)  Models of working memory: mechanisms of active maintenance and executive control New York: Cambridge University Press. doi: 10.1017/CBO9781139174909
    [59] Awh E, Vogel EK, Oh SH (2006) Interactions between attention and working memory. Neuroscience 139: 201-208. doi: 10.1016/j.neuroscience.2005.08.023
    [60] Engle RW, Tuholski SW, Laughlin JE, et al. (1999) Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol Gen 128: 309-331. doi: 10.1037/0096-3445.128.3.309
    [61] Heitz RP, Engle RW (2007) Focusing the spotlight: individual differences in visual attention control. J Exp Psychol Gen 136: 217-240. doi: 10.1037/0096-3445.136.2.217
    [62] Baddeley AD (2000) Short-term and working memory. The Oxford handbook of memory Oxford University Press, 77-92.
    [63] Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3: 255-274. doi: 10.3758/CABN.3.4.255
    [64] Jonides J, Lacey SC, Nee DE (2005) Processes of working memory in mind and brain. Curr Dir Psychol Sci 14: 2-5. doi: 10.1111/j.0963-7214.2005.00323.x
    [65] Pessoa L, Gutierrez E, Bandettini P, et al. (2002) Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35: 975-987. doi: 10.1016/S0896-6273(02)00817-6
    [66] Palva JM, Monto S, Kulashekhar S, et al. (2010) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci U S A 107: 7580-7585. doi: 10.1073/pnas.0913113107
    [67] Murphy AC, Bertolero MA, Papadopoulos L, et al. (2020) Multimodal network dynamics underpinning working memory. Nat Commun 11: 3035. doi: 10.1038/s41467-020-15541-0
    [68] Chai WJ, Abd Hamid AI, Abdullah JM (2018) Working Memory From the Psychological and Neurosciences Perspectives: A Review. Front Psychol 9: 401. doi: 10.3389/fpsyg.2018.00401
    [69] Kim C, Kroger JK, Calhoun VD, et al. (2015) The role of the frontopolar cortex in manipulation of integrated information in working memory. Neurosci Lett 595: 25-29. doi: 10.1016/j.neulet.2015.03.044
    [70] Jimura K, Chushak MS, Westbrook A, et al. (2018) Intertemporal Decision-Making Involves Prefrontal Control Mechanisms Associated with Working Memory. Cereb Cortex 28: 1105-1116. doi: 10.1093/cercor/bhx015
    [71] Osaka M, Osaka N, Kondo H, et al. (2003) The neural basis of individual differences in working memory capacity: an fMRI study. Neuroimage 18: 789-797. doi: 10.1016/S1053-8119(02)00032-0
    [72] Moore AB, Li Z, Tyner CE, et al. (2013) Bilateral basal ganglia activity in verbal working memory. Brain Lang 125: 316-323. doi: 10.1016/j.bandl.2012.05.003
    [73] Vartanian O, Jobidon ME, Bouak F, et al. (2013) Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience 236: 186-194. doi: 10.1016/j.neuroscience.2012.12.060
    [74] Rodriguez Merzagora AC, Izzetoglu M, Onaral B, et al. (2014) Verbal working memory impairments following traumatic brain injury: an fNIRS investigation. Brain Imaging Behav 8: 446-459. doi: 10.1007/s11682-013-9258-8
    [75] Owen AM, McMillan KM, Laird AR, et al. (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25: 46-59. doi: 10.1002/hbm.20131
    [76] Andersen RA, Cui H (2009) Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63: 568-583. doi: 10.1016/j.neuron.2009.08.028
    [77] Kiyonaga A, Egner T (2013) Working memory as internal attention: toward an integrative account of internal and external selection processes. Psychon Bull Rev 20: 228-242. doi: 10.3758/s13423-012-0359-y
    [78] Sreenivasan KK, Curtis CE, D'Esposito M (2014) Revisiting the role of persistent neural activity during working memory. Trends Cogn Sci 18: 82-89. doi: 10.1016/j.tics.2013.12.001
    [79] Andrews-Hanna JR (2012) The brain's default network and its adaptive role in internal mentation. Neuroscientist 18: 251-270. doi: 10.1177/1073858411403316
    [80] Spreng RN, Stevens WD, Chamberlain JP, et al. (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53: 303-317. doi: 10.1016/j.neuroimage.2010.06.016
    [81] Cowan N (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav Brain Sci 24: 87-114. doi: 10.1017/S0140525X01003922
    [82] Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390: 279-281. doi: 10.1038/36846
    [83] Cowan N (1999) An Embedded Process Model of Working Memory. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control Cambridge: Cambridge University Press, 62-101. doi: 10.1017/CBO9781139174909.006
    [84] Van den Berg R, Shin H, Chou WC, et al. (2012) Variability in encoding precision accounts for visual short-term memory limitations. Proc Natl Acad Sci 109: 8780-8785. doi: 10.1073/pnas.1117465109
    [85] Fougnie D, Suchow JW, Alvarez GA (2012) Variability in the quality of visual working memory. Nat Commun 3: 1229. doi: 10.1038/ncomms2237
    [86] Klencklen G, Lavenex PB, Brandner C, et al. (2017) Working memory decline in normal aging: Is it really worse in space than in color? Learn Motiv 57: 48-60. doi: 10.1016/j.lmot.2017.01.007
    [87] Unsworth N, Fukuda K, Awh E, et al. (2014) Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval. Cogn Psychol 71: 1-26. doi: 10.1016/j.cogpsych.2014.01.003
    [88] Smith EE, Geva A (2000) Verbal working memory and its connections to language processing. In Foundations of Neuropsychology, Language and the Brain Academic Press, 123-141.
    [89] Fan LZ, Li H, Zhuo JJ, et al. (2016) The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb Cortex 26: 3508-3526. doi: 10.1093/cercor/bhw157
    [90] Bordier C, Hupe JM, Dojat M (2015) Quantitative evaluation of fMRI retinotopic maps, from V1 to V4, for cognitive experiments. Front Hum Neurosci 9: 277. doi: 10.3389/fnhum.2015.00277
    [91] Fedorenko E, Varley R (2016) Language and thought are not the same thing: evidence from neuroimaging and neurological patients. Ann N Y Acad Sci 1369: 132-153. doi: 10.1111/nyas.13046
    [92] Emch M, von Bastian CC, Koch K (2019) Neural Correlates of Verbal Working Memory: An fMRI Meta-Analysis. Front Hum Neurosci 13: 180. doi: 10.3389/fnhum.2019.00180
    [93] Mahdavi A, Azar R, Shoar MH, et al. (2015) Functional MRI in clinical practice: Assessment of language and motor for pre-surgical planning. Neuroradiol J 28: 468-473. doi: 10.1177/1971400915609343
    [94] Siyanova-Chanturia A, Canal P, Heredia RR (2019) Event-Related Potentials in Monolingual and Bilingual Non-literal Language Processing. The Handbook of the Neuroscience of Multilingualism John Wiley & Sons Ltd, 508-529. doi: 10.1002/9781119387725.ch25
    [95] Rossi S, Telkemeyer S, Wartenburger I, et al. (2012) Shedding light on words and sentences: near-infrared spectroscopy in language research. Brain Lang 121: 152-163. doi: 10.1016/j.bandl.2011.03.008
    [96] Crosson B (1992)  Subcortical functions in language and memory New York: Guilford Press, 374.
    [97] Buchweitz A, Keller TA, Meyler A, et al. (2012) Brain activation for language dual-tasking: listening to two people speak at the same time and a change in network timing. Hum Brain Mapp 33: 1868-1882. doi: 10.1002/hbm.21327
    [98] Fiebach CJ, Vos SH, Friederici AD (2004) Neural correlates of syntactic ambiguity in sentence comprehension for low and high span readers. J Cogn Neurosci 16: 1562-1575. doi: 10.1162/0898929042568479
    [99] Mason RA, Just MA (2007) Lexical ambiguity in sentence comprehension. Brain Res 1146: 115-127. doi: 10.1016/j.brainres.2007.02.076
    [100] Kane MJ, Conway ARA, Miura TK, et al. (2007) Working memory, attention control, and the N-back task: a question of construct validity. J Exp Psychol Learn Mem Cogn 33: 615-622. doi: 10.1037/0278-7393.33.3.615
    [101] Jaeggi SM, Buschkuehl M, Perrig WJ, et al. (2010) The concurrent validity of the N-back task as a working memory measure. Memory 18: 394-412. doi: 10.1080/09658211003702171
    [102] Rudner M, Karlsson T, Gunnarsson J, et al. (2013) Levels of processing and language modality specificity in working memory. Neuropsychologia 51: 656-666. doi: 10.1016/j.neuropsychologia.2012.12.011
    [103] Rudner M, Ronnberg J, Hugdahl K (2005) Reversing spoken items-mind twisting not tongue twisting. Brain Lang 92: 78-90. doi: 10.1016/j.bandl.2004.05.010
    [104] Newman SD, Malaia E, Seo R, et al. (2013) The effect of individual differences in working memory capacity on sentence comprehension: an FMRI study. Brain Topogr 26: 458-467. doi: 10.1007/s10548-012-0264-8
    [105] D'Esposito M, Detre JA, Alsop DC, et al. (1995) The neural basis of the central executive system of working memory. Nature 378: 279-281. doi: 10.1038/378279a0
    [106] Jaeggi SM, Seewer R, Nirkko AC, et al. (2003) Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. Neuroimage 19: 210-225. doi: 10.1016/S1053-8119(03)00098-3
    [107] Taylor JG, Taylor NR (2000) Analysis of recurrent cortico-basal ganglia-thalamic loops for working memory. Biol Cybern 82: 415-432. doi: 10.1007/s004220050595
    [108] Nir-Cohen G, Kessler Y, Egner T (2020) Neural substrates of working memory updating. BioRxiv 853630.
    [109] McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11: 103-107. doi: 10.1038/nn2024
    [110] Wallentin M, Roepstorff A, Glover R, et al. (2006) Parallel memory systems for talking about location and age in precuneus, caudate and Broca's region. Neuroimage 32: 1850-1864. doi: 10.1016/j.neuroimage.2006.05.002
    [111] Levelt WJ, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behav Brain Sci 22: 1-38.
    [112] Marvel CL, Desmond JE (2012) From storage to manipulation: How the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang 120: 42-51. doi: 10.1016/j.bandl.2011.08.005
    [113] McGettigan C, Warren JE, Eisner F, et al. (2011) Neural correlates of sublexical processing in phonological working memory. J Cogn Neurosci 23: 961-977. doi: 10.1162/jocn.2010.21491
    [114] Powell JL, Kemp GJ, Garcia-Finana M (2012) Association between language and spatial laterality and cognitive ability: an fMRI study. Neuroimage 59: 1818-1829. doi: 10.1016/j.neuroimage.2011.08.040
    [115] Sahin NT, Pinker S, Halgren E (2006) Abstract grammatical processing of nouns and verbs in Broca's area: evidence from fMRI. Cortex 42: 540-562. doi: 10.1016/S0010-9452(08)70394-0
    [116] Meyer L, Obleser J, Kiebel SJ, et al. (2012) Spatiotemporal dynamics of argument retrieval and reordering: an FMRI and EEG study on sentence processing. Front Psychol 3: 523.
    [117] Bonhage CE, Fiebach CJ, Bahlmann J, et al. (2014) Brain signature of working memory for sentence structure: enriched encoding and facilitated maintenance. J Cogn Neurosci 26: 1654-1671. doi: 10.1162/jocn_a_00566
    [118] Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20: 353-364. doi: 10.1038/nn.4502
    [119] Meier J, Tewarie P, Hillebrand A, et al. (2016) A Mapping Between Structural and Functional Brain Networks. Brain Connect 6: 298-311. doi: 10.1089/brain.2015.0408
    [120] Yao Z, Hu B, Xie Y, et al. (2015) A review of structural and functional brain networks: small world and atlas. Brain Inform 2: 45-52. doi: 10.1007/s40708-015-0009-z
    [121] Makuuchi M, Friederici AD (2013) Hierarchical functional connectivity between the core language system and the working memory system. Cortex 49: 2416-2423. doi: 10.1016/j.cortex.2013.01.007
    [122] Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15: 254-262. doi: 10.1016/j.tics.2011.04.003
    [123] Caplan D, Waters GS (1999) Verbal working memory and sentence comprehension. Behav Brain Sci 22: 77-94.
    [124] Perrachione TK, Ghosh SS, Ostrovskaya I, et al. (2017) Phonological Working Memory for Words and Nonwords in Cerebral Cortex. J Speech Lang Hear Res 60: 1959-1979. doi: 10.1044/2017_JSLHR-L-15-0446
    [125] Newman SD, Just MA, Carpenter PA (2002) The synchronization of the human cortical working memory network. Neuroimage 15: 810-822. doi: 10.1006/nimg.2001.0997
    [126] Nyberg L, Sandblom J, Jones S, et al. (2003) Neural correlates of training-related memory improvement in adulthood and aging. Proc Natl Acad Sci U S A 100: 13728-13733. doi: 10.1073/pnas.1735487100
    [127] Cooke A, Grossman M, DeVita C, et al. (2006) Large-scale neural network for sentence processing. Brain Lang 96: 14-36. doi: 10.1016/j.bandl.2005.07.072
    [128] Tomasi D, Volkow ND (2020) Network connectivity predicts language processing in healthy adults. Hum Brain Mapp 41: 3696-3708. doi: 10.1002/hbm.25042
    [129] Brownsett SL, Wise RJ (2010) The contribution of the parietal lobes to speaking and writing. Cereb Cortex 20: 517-523. doi: 10.1093/cercor/bhp120
    [130] Segal E, Petrides M (2013) Functional activation during reading in relation to the sulci of the angular gyrus region. Eur J Neurosci 38: 2793-2801. doi: 10.1111/ejn.12277
    [131] Tomasi D, Volkow ND (2012) Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry 17: 841-854. doi: 10.1038/mp.2011.177
    [132] Cunningham SI, Tomasi D, Volkow ND (2017) Structural and functional connectivity of the precuneus and thalamus to the default mode network. Hum Brain Mapp 38: 938-956. doi: 10.1002/hbm.23429
    [133] Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37: 1083-1090. doi: 10.1016/j.neuroimage.2007.02.041
    [134] Mineroff Z, Blank IA, Mahowald K, et al. (2018) A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size. Neuropsychologia 119: 501-511. doi: 10.1016/j.neuropsychologia.2018.09.011
    [135] Ellis Weismer S, Plante E, Jones M, et al. (2005) A functional magnetic resonance imaging investigation of verbal working memory in adolescents with specific language impairment. J Speech Lang Hear Res 48: 405-425. doi: 10.1044/1092-4388(2005/028)
    [136] Beneventi H, Tonnessen FE, Ersland L (2009) Dyslexic children show short-term memory deficits in phonological storage and serial rehearsal: an fMRI study. Int J Neurosci 119: 2017-2043. doi: 10.1080/00207450903139671
    [137] Buchsbaum B, Pickell B, Love T, et al. (2005) Neural substrates for verbal working memory in deaf signers: fMRI study and lesion case report. Brain Lang 95: 265-272. doi: 10.1016/j.bandl.2005.01.009
    [138] Whitwell JL, Jones DT, Duffy JR, et al. (2015) Working memory and language network dysfunctions in logopenic aphasia: a task-free fMRI comparison with Alzheimer's dementia. Neurobiol Aging 36: 1245-1252. doi: 10.1016/j.neurobiolaging.2014.12.013
    [139] Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62: 816-847. doi: 10.1016/j.neuroimage.2012.04.062
    [140] Heim S (2005) The structure and dynamics of normal language processing: insights from neuroimaging. Acta Neurobiol Exp (Wars) 65: 95-116.
    [141] Dick AS, Bernal B, Tremblay P (2014) The language connectome: new pathways, new concepts. Neuroscientist 20: 453-467. doi: 10.1177/1073858413513502
  • neurosci-08-01-001-s001.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(533) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog