Research article

Is Alzheimers Disease Infectious?
Relative to the CJD Bacterial Infection Model of Neurodegeneration

  • Received: 31 July 2015 Accepted: 04 November 2015 Published: 11 November 2015
  • Alzheimer's disease (AD) has been recently considered as a possible brain infection related to the Creutzfeldt-Jakob disease (CJD) transmissible dementia model. As with CJD, there is controversy whether the infectious agent is an amyloid protein (prion theory) or a bacterium. In this review, we show that the prion theory lacks credibility because spiroplasma, a tiny wall-less bacterium, is clearly involved in the pathogenesis of CJD and the prion amyloid can be separated from infectivity. In addition to prion amyloid deposits, the transmissible agent of CJD is associated with amyloids (A-β, Tau, and α-synuclein) characteristic of other neurodegenerative diseases including AD and Parkinsonism. Reports of spiroplasma inducing formation of α-synuclein in tissue culture and Borrelia spirochetes inducing formation of A-β and Tau in tissue culture suggests that bacteria may have a role in the pathogenesis of the neurodegenerative diseases.

    Citation: Frank O. Bastian. Is Alzheimers Disease Infectious?Relative to the CJD Bacterial Infection Model of Neurodegeneration[J]. AIMS Neuroscience, 2015, 2(4): 240-258. doi: 10.3934/Neuroscience.2015.4.240

    Related Papers:

    [1] Reinhard Racke . Blow-up for hyperbolized compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022
    [2] Huiyang Xu . Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Communications in Analysis and Mechanics, 2023, 15(2): 132-161. doi: 10.3934/cam.2023008
    [3] Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang . The Cauchy problem for general nonlinear wave equations with doubly dispersive. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019
    [4] Xiulan Wu, Yaxin Zhao, Xiaoxin Yang . On a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity. Communications in Analysis and Mechanics, 2024, 16(3): 528-553. doi: 10.3934/cam.2024025
    [5] Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033
    [6] Tingfu Feng, Yan Dong, Kelei Zhang, Yan Zhu . Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth. Communications in Analysis and Mechanics, 2025, 17(1): 263-289. doi: 10.3934/cam.2025011
    [7] Isaac Neal, Steve Shkoller, Vlad Vicol . A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy. Communications in Analysis and Mechanics, 2025, 17(1): 188-236. doi: 10.3934/cam.2025009
    [8] Mahmoud El Ahmadi, Mohammed Barghouthe, Anass Lamaizi, Mohammed Berrajaa . Existence and multiplicity results for a kind of double phase problems with mixed boundary value conditions. Communications in Analysis and Mechanics, 2024, 16(3): 509-527. doi: 10.3934/cam.2024024
    [9] Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012
    [10] Yang Liu, Xiao Long, Li Zhang . Long-time dynamics for a coupled system modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2025, 17(1): 15-40. doi: 10.3934/cam.2025002
  • Alzheimer's disease (AD) has been recently considered as a possible brain infection related to the Creutzfeldt-Jakob disease (CJD) transmissible dementia model. As with CJD, there is controversy whether the infectious agent is an amyloid protein (prion theory) or a bacterium. In this review, we show that the prion theory lacks credibility because spiroplasma, a tiny wall-less bacterium, is clearly involved in the pathogenesis of CJD and the prion amyloid can be separated from infectivity. In addition to prion amyloid deposits, the transmissible agent of CJD is associated with amyloids (A-β, Tau, and α-synuclein) characteristic of other neurodegenerative diseases including AD and Parkinsonism. Reports of spiroplasma inducing formation of α-synuclein in tissue culture and Borrelia spirochetes inducing formation of A-β and Tau in tissue culture suggests that bacteria may have a role in the pathogenesis of the neurodegenerative diseases.


    In this paper, we study the initial boundary value problem of the nonlinear viscoelastic hyperbolic problem with variable exponents:

    $ {utt+2u+2uttt0g(tτ)2u(τ)dτ+|ut|m(x)2ut=|u|p(x)2u,(x,t)Ω×(0,T),u(x,t)=uν(x,t)=0,(x,t)Ω×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x),xΩ,
    $
    (1.1)

    where $ \Omega\subset R^{n}(n\geq1) $ is a bounded domain in $ R^n $ with a smooth boundary $ \partial \Omega $, $ \nu $ is the unit outer normal to $ \partial\Omega $, the exponents $ m(x) $ and $ p(x) $ are continuous functions on $ \overline{\Omega} $ with the logarithmic module of continuity:

    $ x,yΩ,|xy|<1,|m(x)m(y)|+|p(x)p(y)|ω(|xy|),
    $
    (1.2)

    where

    $ limτ0+supω(τ)ln1τ=C<.
    $
    (1.3)

    In addition to this condition, the exponents satisfy the following:

    $ 2m:=essinfxΩm(x)m(x)m+:=esssupxΩm(x)<2(n2)n4,
    $
    (1.4)
    $ 2p:=essinfxΩp(x)p(x)p+:=esssupxΩp(x)<2(n2)n4,
    $
    (1.5)

    $ g: R^{+} \, \rightarrow R^{+} $ is a $ C^{1} $ function satisfying

    $ g(0)>0, g(τ)0,10g(τ)dτ=l>0.
    $
    (1.6)

    The equation of Problem $ (1.1) $ arises from the modeling of various physical phenomena such as the viscoelasticity and the system governing the longitudinal motion of a viscoelastic configuration obeying a nonlinear Boltzmann's model, or electro-rheological fluids, viscoelastic fluids, processes of filtration through a porous medium, and fluids with temperature-dependent viscosity and image processing which give rise to equations with nonstandard growth conditions, that is, equations with variable exponents of nonlinearities. More details on these problems can be found in previous studies [1,2,3,4,5,6].

    When $ m(x) $ and $ p(x) $ are constants, Messaoudi [7] discussed the nonlinear viscoelastic wave equation

    $ uttu+t0g(tτ)u(τ)dτ+|ut|m2ut=|u|p2u,
    $

    he proved that any weak solution with negative initial energy blows up in finite time if $ p > m $, and a global existence result for $ p\leq m $. The results were improved later by Messaoudi [8], where the blow-up result in finite time with positive initial energy was obtained. Moreover, Song [9] showed the finite-time blow-up of some solutions whose initial data had arbitrarily high initial energy. In the same year, Song [10] studied the initial-boundary value problem

    $ |ut|ρuttu+t0g(tτ)u(τ)dτ+|ut|m2ut=|u|p2u,
    $

    and proved the nonexistence of global solutions with positive initial energy. Cavalcanti, Domingos, and Ferreira [11] were concerned with the non-linear viscoelastic equation

    $ |ut|ρuttuutt+t0g(tτ)u(τ)dτγut=0,
    $

    and proved the global existence of weak solutions. Moreover, they obtained the uniform decay rates of the energy by assuming a strong damping $ \triangle u_{t} $ acting in the domain and providing the relaxation function which decays exponentially.

    In 2017, Messaoudi [12] considered the following nonlinear wave equation with variable exponents:

    $ uttu+a|ut|m(x)2ut=b|u|p(x)2u,
    $

    where $ a, b $ are positive constants. By using the Faedo$ - $Galerkin method, the existence of a unique weak solution is established under suitable assumptions on the variable exponents $ m(x) $ and $ p(x) $. Then this paper also proved the finite-time blow-up of solutions and gave a two-dimensional numerical example to illustrate the blow up result. Park [13] showed the blow up of solutions for a viscoelastic wave equation with variable exponents

    $ uttu+t0g(ts)u(s)ds+a|ut|m(x)2ut=b|u|p(x)2u,
    $

    where the exponents of nonlinearity $ p(x) $ and $ m(x) $ are given functions and $ a, b > 0 $ are constants. For nonincreasing positive function $ g $, they prove the blow-up result for the solutions with positive initial energy as well as nonpositive initial energy. Alahyane [14] discussed the nonlinear viscoelastic wave equation with variable exponents

    $ uttu+t0g(tτ)u(τ)dτ+μut=|u|p(x)2u,
    $

    where $ \mu $ is a nonnegative constant and the exponent of nonlinearity $ p(x) $ and $ g $ are given functions. Under arbitrary positive initial energy and specific conditions on the relaxation function $ g $, they prove a finite-time blow-up result and give some numerical applications to illustrate their theoretical results. Ouaoua and Boughamsa [15] considered the following boundary value problem:

    $ utt+2uu+|ut|m(x)2ut=|u|p(x)2u,
    $

    the authors established the local existence by using the Faedo$ - $Galerkin method with positive initial energy and suitable conditions on the variable exponents $ m(x) $ and $ r(x) $. In addition, they also proved that the local solution is global and obtained the stability estimate of the solution. Ding and Zhou [16] considered a Timoshenko-type equation

    $ utt+2uM(||u||22)u+|ut|p(x)2ut=|u|q(x)2u,
    $

    they prove that the solutions blow up in finite time with positive initial energy. Therefore, the existence of finite-time blow-up solutions with arbitrarily high initial energy is established, and the upper and lower bounds of the blow-up time are derived. More related references can be found in [17,18,19,20,21,22].

    Motivated by [7,13,14], we considered the existence of the solutions and their blow-up for the nonlinear damping and viscoelastic hyperbolic problem with variable exponents. Our aim in this work is to prove the existence of the weak solutions and to find sufficient conditions on $ m(x) $ and $ p(x) $ for which the blow-up takes place.

    This article consists of three sections in addition to the introduction. In Section 2, we recall the definitions and properties of $ L^{p(x)}(\Omega) $ and the Sobolev spaces $ W^{1, p(x)}(\Omega) $. In Section 3, we prove the existence of weak solutions for Problem (1.1). In Section 4, we state and prove the blow-up result for solutions with positive initial energy as well as nonpositive initial energy.

    In this section, we review some results regarding Lebesgue and Sobolev spaces with variable exponents first. All of these results and a comprehensive study of these spaces can be found in [23]. Here $ (\cdot, \cdot) $ and $ \langle \cdot, \cdot \rangle $ denote the inner product in space $ L^{2}(\Omega) $ and the duality pairing between $ H^{-2}(\Omega) $ and $ H_{0}^{2}(\Omega) $.

    The variable exponent Lebesgue space $ L^{p(x)}(\Omega) $ is defined by

    $ L^{p(x)}(\Omega) = \left\{u(x): u\, \, {\rm is\, \, \rm measurable\, \, \rm in}\, \, \Omega, \ \rho_{p(x)}(u) = \int_{\Omega}|u|^{p(x)}dx < \infty\right\}, $

    this space is endowed with the norm

    $ \|u\|_{p(x)} = \mbox{inf}\ \left\{\lambda > 0:\int_{\Omega}\Big|\frac{u(x)}{\lambda}\Big|^{p(x)}\mathrm{d}x\leq1\right\}. $

    The variable exponent Sobolev space $ W^{1, p(x)}(\Omega) $ is defined by

    $ W^{1, p(x)}(\Omega) = \left\{u\in L^{p(x)}(\Omega)\ \, {\rm such \, \, \rm that}\, \, \nabla u \, \, {\rm exists\, \, \rm and}\, \, |\nabla u|\in L^{p(x)}(\Omega)\right\}, $

    the corresponding norm for this space is

    $ \|u\|_{1, p(x)} = \|u\|_{{p(x)}}+\|\nabla u\|_{{p(x)}}, $

    define$ \ W_0^{1, p(x)}(\Omega) $ as the closure of $ \ C_0^\infty(\Omega) $ with respect to the$ \ W^{1, p(x)}(\Omega) $ norm. The spaces $ \ L^{p(x)}(\Omega), W^{1, p(x)}(\Omega) $ and $ W_0^{1, p(x)}(\Omega) $ are separable and reflexive Banach spaces when $ 1 < p^-\leq p^+ < \infty $, where $ p^-: = ess\inf\limits_{\Omega} p(x) $ and $ p^+: = ess\sup\limits_{\Omega} p(x). $ As usual, we denote the conjugate exponent of $ p(x) $ by $ p'(x) = p(x)/(p(x)-1) $ and the Sobolev exponent by

    $ p^*(x) = \left\{np(x)nkp(x),if p(x)<n,,if p(x)n.
    \right. $

    Lemma 2.1. If $ p_{1}(x), \ p_{2}(x)\in C_{+}(\overline{\Omega}) = \{h\in C(\overline{\Omega}):\min\limits_{x\in \overline{\Omega}} h(x) > 1\} $, $ p_{1}(x)\leq p_{2}(x) $ for any $ x\in\Omega $, then there exists the continuous embedding $ L^{p_{2}(x)}(\Omega)\hookrightarrow L^{p_{1}(x)}(\Omega) $, whose norm does not exceed $ |\Omega|+1 $.

    Lemma 2.2. Let $ p(x), \ q(x)\in C_{+}(\overline{\Omega}). $ Assuming that $ q(x) < p^{\ast}(x) $, there is a compact and continuous embedding $ W^{k, p(x)}(\Omega)\hookrightarrow L^{q(x)}(\Omega). $

    Lemma 2.3. (Hölder's inequality) [24] For any $ u\in L^{p(x)}(\Omega) $ and $ v\in L^{q(x)}(\Omega) $, then the following inequality holds:

    $ \left|\int_{\Omega}uvdx\right|\leq(\frac{1}{p^{-}}+\frac{1}{q^{-}})||u||_{p(x)}||v||_{q(x)}\leq2||u||_{p(x)}||v||_{q(x)}. $

    Lemma 2.4. For $ u\in L^{p(x)}(\Omega) $, the following relations hold:

    $ u\neq0 \Rightarrow \Big(\|u\|_{p(x)} = \lambda\Leftrightarrow\rho_{p(x)}(\frac{u}{\lambda}) = 1\Big ), $
    $ \|u\|_{p(x)} < 1( = 1; > 1)\Leftrightarrow\rho_{p(x)}(u) < 1( = 1; > 1), $
    $ \|u\|_{p(x)} > 1\Rightarrow \|u\|_{p(x)}^{p^{-}}\leq\rho_{p(x)}(u)\leq\|u\|_{p(x)}^{p^+}, $
    $ \|u\|_{p(x)} < 1\Rightarrow \|u\|_{p(x)}^{p^+}\leq\rho_{p(x)}(u)\leq\|u\|_{p(x)}^{p^-}. $

    Next, we give the definition of the weak solution to Problem $ (1.1) $.

    Definition 2.1. A function u(x, t) is called a weak solution for Problem $ (1.1) $, if $ u\in C(0, T;H_{0}^{2}(\Omega)) $ $ \cap C^{1}(0, T;H_{0}^{2}(\Omega))\cap C^{2}(0, T;H^{-2}(\Omega)) $ with $ u_{tt}\in L^{2}(0, T;H_{0}^{2}(\Omega)) $ and u satisfies the following conditions:

    (1) For every $ \omega \in H_{0}^{2}(\Omega) $ and for $ a.e. \, t\in (0, T) $

    $ \langle u_{tt}, \omega\rangle+(\triangle u, \triangle \omega)+(\triangle u_{tt}, \triangle \omega)-\int_{0}^{t}g(t-\tau)(\triangle u(\tau), \triangle \omega)d\tau\\+(|u_{t}|^{m(x)-2}u_{t}, \omega) = (|u|^{p(x)-2}u, \omega), $

    (2) $ u(x, 0) = u_{0}(x)\in H_{0}^{2}(\Omega), \, u_{t}(x, 0) = u_{1}(x)\in H_{0}^{2}(\Omega). $

    In this section, we prove the existence of a weak solution for Problem $ (1.1) $ by making use of the Faedo–Galerkin method and the contraction mapping principle. For a fixed $ T > 0 $, we consider the space $ \mathscr H = C(0, T;H_{0}^{2}(\Omega))\cap C^{1}(0, T;H_{0}^{2}(\Omega)) $ with the norm $ ||v||_{\mathscr H}^{2} = \max\limits_{0\leq t\leq T} (||\triangle v_{t}||_{2}^{2}+l||\triangle v||_{2}^{2}) $.

    Lemma 3.1. Assume that $ (1.4) $, $ (1.5) $, and $ (1.6) $ hold, let $ (u_{0}, u_{1})\in H_{0}^{2}(\Omega)\times H_{0}^{2}(\Omega) $, for any $ T > 0 $, $ v\in \mathscr H $, then there exists $ u\in C(0, T;H_{0}^{2}(\Omega))\cap C^{1}(0, T;H_{0}^{2}(\Omega))\cap C^{2}(0, T;H^{-2}(\Omega)) $ with $ \ u_{tt}\in L^{2}(0, T;H_{0}^{2}(\Omega)) $ satisfying

    $ {utt+2u+2uttt0g(tτ)2u(τ)dτ+|ut|m(x)2ut=|v|p(x)2v,(x,t)Ω×(0,T),u(x,t)=uν(x,t)=0,(x,t)Ω×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x),xΩ.
    $
    (3.1)

    Proof. Let $ \{\omega_{j}\}_{j = 1}^{\infty} $ be the orthogonal basis of $ H\mathcal{}_{0}^{2}(\Omega) $, which is the standard orthogonal basis in $ L^{2}(\Omega) $ such that

    $ -\triangle\omega_{j} = \lambda_{j}\omega_{j} \ \ \rm in\ \ \Omega, \, \, \omega_{j} = 0 \ \ \rm on\ \ \partial \Omega, $

    we denote by $ V_{k} = {\rm span}\{\omega_{1}, \omega_{2}, \cdot\cdot\cdot, \omega_{k}\} $ the subspace generated by the first $ k $ vectors of the basis $ \{\omega_{j}\}_{j = 1}^{\infty} $. By normalization, we have $ ||\omega_{j}||_{2} = 1 $. For all $ k\geq1 $, we seek $ k $ functions $ c_{1}^{k}(t), c_{2}^{k}(t), \ldots, c_{k}^{k}(t)\in C^{2}[0, T] $ such that

    $ u^{k}(x, t) = \sum\limits_{j = 1}^{k}c_{j}^{k}(t)\omega_{j}(x), $

    satisfying the following approximate problem

    $ {(uktt,ωi)+(uk,ωi)+(uktt,ωi)t0g(tτ)(uk,ωi)dτ+(|ukt|m(x)2ukt,ωi)=Ω|v|p(x)2vωidx,uk(0)=uk0,   ukt(0)=uk1,     i=1,2,k,
    $
    (3.2)

    where

    $ u_{0}^{k} = \sum\limits_{i = 1}^{k}(u_{0}, \omega_{i})\omega_{i}\rightarrow u_{0}\ \ \ \rm in\ \ H_{0}^{2}(\Omega), $
    $ u_{1}^{k} = \sum\limits_{i = 1}^{k}(u_{1}, \omega_{i})\omega_{i}\rightarrow u_{1}\ \ \ \rm in\ \ H_{0}^{2}(\Omega), $

    thus, $ (3.2) $ generates the initial value problem for the system of second-order differential equations with respect to $ c_{i}^{k}(t) $:

    $ {(1+λ2i)ckitt(t)+λ2icki(t)=Gi(ck1t(t),,ckkt(t))+gi(cki(t)),   i=1,2,,k,cki(0)=Ωu0ωidx,      ckit(0)=Ωu1ωidx,              i=1,2,,k.
    $
    (3.3)

    where

    $ Gi(ck1t(t),,ckkt(t))=Ω|kj=1ckjt(t)ωj(x)|m(x)2kj=1ckjt(t)ωj(x)ωi(x)dx,
    $

    and

    $ gi(cki(t))=λ2it0g(tτ)cki(τ)dτ+Ω|v|p(x)2vωidx,
    $

    by Peano's Theorem, we infer that the Problem $ (3.3) $ admits a local solution $ c_{i}^{k}(t)\in C^{2}[0, T] $.

    $ \textbf{The} $ $ \textbf{first} $ $ \textbf{estimate}. $ Multiplying $ (3.2) $ by $ c_{it}^{k}(t) $ and summing with respect to $ i $, we arrive at the relation

    $ ddt(12||ukt||22+12||uk||22+12||ukt||22)+Ω|ukt|m(x)dxt0g(tτ)Ωuk(τ)uktdxdτ=Ω|v|p(x)2vuktdx.
    $
    (3.4)

    By simple calculation, we have

    $ t0g(tτ)ΩΔuk(τ)Δuktdxdτ=12ddt(guk)12(guk)12ddtt0g(τ)dτ||Δuk||22+12g(t)||uk||22,
    $
    (3.5)

    where

    $ (\varphi\diamond\bigtriangleup\psi) = \int_{0}^{t}\varphi(t-\tau)||\triangle\psi(t)-\triangle\psi(\tau)||_{2}^{2}d\tau, $

    inserting $ (3.5) $ into $ (3.4) $, using Hölder's inequality and Young's inequality, we obtain

    $ ddt[12||ukt||22+12||ukt||22+12(guk)+12(1t0g(τ)dτ)||Δuk||22]=12(guk)12g(t)||uk||22+Ω|v|p(x)2vuktdxΩ|ukt|m(x)dxΩ|v|p(x)2vuktdx|v|p(x)2v2||ukt||2η2Ω|v|2(p(x)1)dx+12η||ukt||22,
    $
    (3.6)

    using the embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{2(p(x)-1)}(\Omega) $ and Lemma $ 2.4 $, we easily obtain

    $ Ω|v|2(p(x)1)dxmax{||v||2(p1)2(p(x)1),||v||2(p+1)2(p(x)1)}Cmax{||v||2(p1)2,||v||2(p+1)2}C,
    $
    (3.7)

    where $ C $ is a positive constant. We denote by $ C $ various positive constants that may be different at different occurrences.

    Combining $ (3.6) $ and $ (3.7) $, we obtain

    $ ddt[12||ukt||22+12||ukt||22+12(guk)+12(1t0g(τ)dτ)||Δuk||22]η2C+12η||ukt||22,
    $

    by Gronwall's inequality, there exists a positive constant $ C_{T} $ such that

    $ ||ukt||22+||ukt||22+(guk)+l||Δuk||22CT,
    $
    (3.8)

    therefore, there exists a subsequence of $ \{u^{k}\}_{k = 1}^{\infty} $, which we still denote by $ \{u^{k}\}_{k = 1}^{\infty} $, such that

    $ uku weakly star in L(0,T;H20(Ω)),uktut weakly star in L(0,T;H20(Ω)),uku weakly in L2(0,T;H20(Ω)),uktut weakly in L2(0,T;H20(Ω)).
    $
    (3.9)

    $ \textbf{The} $ $ \textbf{second} $ $ \textbf{estimate}. $ Multiplying $ (3.2) $ by $ c_{itt}^{k}(t) $ and summing with respect to $ i $, we obtain

    $ ||uktt||22+||Δuktt||22+ddt(Ω1m(x)|ukt|m(x)dx)=Ωukukttdx+t0g(tτ)ΩΔuk(τ)Δukttdxdτ+Ω|v|p(x)2vukttdx.
    $
    (3.10)

    Note that we have the estimates for $ \varepsilon > 0 $

    $ |Ωukukttdx|ε||uktt||22+14ε||uk||22,
    $
    (3.11)
    $ Ω|v|p(x)2vukttdx|v|p(x)2v2uktt2ε||uktt||22+14εΩ|v|2(p(x)1)dx,
    $
    (3.12)

    and

    $ |t0g(tτ)Ωuk(τ)ukttdxdτ|14εΩ(t0g(tτ)uk(τ)dτ)2dx+ε||uktt||22ε||uktt||22+14εt0g(s)dst0g(tτ)Ω|uk(τ)|2dxdτε||uktt||22+(1l)g(0)4εt0||uk(τ)||22dτ,
    $
    (3.13)

    similar to $ (3.6) $ and $ (3.7) $, from $ H_{0}^{2}(\Omega)\hookrightarrow L^{2}(\Omega) $, we have

    $ Ω|v|p(x)2vukttdxεC||uktt||22+C4ε.
    $
    (3.14)

    Taking into account $ (3.10)-(3.14) $, we obtain

    $ ||uktt||22+(12εCε)||uktt||22+ddt(Ω1m(x)|ukt|m(x)dx)14ε||uk||22+(1l)g(0)4εt0||uk(τ)||22dτ+C4ε,
    $
    (3.15)

    integrating $ (3.15) $ over $ (0, t) $, we obtain

    $ t0||uktt||22dτ+(12εCε)t0||uktt||22dτ+Ω1m(x)|ukt|m(x)dxC4εt0(||uk||22+τ0||uk(s)||22ds)dτ+CT,
    $
    (3.16)

    taking $ \varepsilon $ small enough in (3.16), for some positive constant $ C_{T} $, we obtain

    $ t0||uktt||22dτ+t0||uktt||22dτCT,
    $
    (3.17)

    we observe that estimate $ (3.17) $ implies that there exists a subsequence of $ \{u^{k}\}_{k = 1}^{\infty} $, which we still denote by $ \{u^{k}\}_{k = 1}^{\infty} $, such that

    $ ukttutt weakly in L2(0,T;H20(Ω)).
    $
    (3.18)

    In addition, from $ (3.9) $, we have

    $ (uktt,ωi)=ddt(ukt,ωi)ddt(ut,ωi)=(utt,ωi)  weakly  star  in  L(0,T;H2(Ω)).
    $
    (3.19)

    Next, we will deal with the nonlinear term. Combining $ (3.9) $, $ (3.18) $, and Aubin–Lions theorem [25], we deduce that there exists a subsequence of $ \{u^{k}\}_{k = 1}^{\infty} $ such that

    $ uktut strongly in C(0,T;L2(Ω)),
    $
    (3.20)

    then

    $ |ukt|m(x)2ukt|ut|m(x)2ut  a.e. (x,t)Ω×(0,T),
    $
    (3.21)

    using the embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{2(m(x)-1)}(\Omega) $ and Lemma $ 2.4 $, we have

    $ |ukt|m(x)2ukt22=Ω|ukt|2(m(x)1)dxmax{||ukt||2(m1)2,||ukt||2(m+1)2}C,
    $
    (3.22)

    hence, using $ (3.21) $ and $ (3.22) $, we obtain

    $ |ukt|m(x)2ukt|ut|m(x)2ut  weakly  star in L(0,T;L2(Ω)).
    $
    (3.23)

    Setting up $ k\rightarrow \infty $ in $ (3.2) $, combining with $ (3.9) $, $ (3.18) $, $ (3.19) $, and $ (3.23) $, we obtain

    $ \langle u_{tt}, \omega \rangle+(\triangle u, \triangle \omega)+(\triangle u_{tt}, \triangle \omega)-\int_{0}^{t}g(t-\tau)(\triangle u(\tau), \triangle \omega)d\tau+(|u_{t}|^{m(x)-2}u_{t}, \omega) = (|v|^{p(x)-2}v, \omega). $

    To handle the initial conditions. From $ (3.9) $ and Aubin–Lions theorem, we can easily get $ u^{k}\rightarrow u $ in $ C(0, T;L^{2}(\Omega)) $, thus $ u^{k}(0)\rightarrow u(0) $ in $ L^{2}(\Omega) $, and we also have that $ u^{k}(0) = u_{0}^{k}\rightarrow u_{0} $ in $ H_{0}^{2}(\Omega) $, hence $ u(0) = u_{0} $ in $ H_{0}^{2}(\Omega) $. Similarly, we get that $ u_{t}(0) = u_{1} $.

    Uniqueness. Suppose that $ (3.1) $ has solutions $ u $ and $ z $, then $ \omega = u-z $ satisfies

    $ {ωtt+2ω+2ωttt0g(tτ)2ω(τ)dτ+|ut|m(x)2ut|zt|m(x)2zt=0,(x,t)Ω×(0,T),ω(x,t)=ων(x,t)=0,(x,t)Ω×(0,T),ω(x,0)=0, ωt(x,0)=0,xΩ.
    $

    Multiplying the first equation of Problem $ (3.1) $ by $ \omega_{t} $ and integrating over $ \Omega $, we have

    $ 12ddt[||ωt||22+(1t0g(τ)dτ)||ω||22+||ωt||22+(gω)]+12g(t)||ω||22=Ω(|ut|m(x)2ut|zt|m(x)2zt)(utzt)dx+12(gω),
    $

    from the inequality

    $ (|a|m(x)2a|b|m(x)2b)(ab)0,
    $
    (3.24)

    for all $ a, b\in R^{n} $ and a.e. $ x\in\Omega $, we obtain

    $ ||\omega_{t}||_{2}^{2}+l||\triangle \omega||_{2}^{2}+||\triangle \omega_{t}||_{2}^{2} = 0, $

    which implies that $ \omega = 0 $. This completes the proof.

    Theorem 3.1. Assume that $ (1.4) $ and $ (1.6) $ hold, let the initial date $ (u_{0}, u_{1})\in H_{0}^{2}(\Omega)\times H_{0}^{2}(\Omega) $, and

    $ 2\leq p^{-}\leq p(x)\leq p^{+}\leq\frac{2(n-3)}{n-4}, $

    then there exists a unique local solution of Problem $ (1.1) $.

    Proof. For any $ T > 0 $, consider $ M_{T} = \{u\in\mathscr H:u(0) = u_{0}, u_{t}(0) = u_{1}, ||u||_{\mathscr H}\leq M\} $. Lemma $ 3.1 $ implies that for $ \forall v\in M_{T} $, there exists $ u = S(v) $ such that $ u $ is the unique solution to Problem $ 3.1 $. Next, we prove that for a suitable $ T > 0 $, $ S $ is a contractive map satisfying $ S(M_{T})\subset M_{T} $.

    Multiplying the first equation of the Problem $ (3.1) $ by $ u_{t} $ and integrating it over $ (0, t) $, we obtain

    $ ||ut||22+||ut||22+(gu)+l||Δu||22||u1||22+||u1||22+||Δu0||22+2t0Ω|v|p(x)2vutdxdτ,
    $
    (3.25)

    using Hölder's inequality and Young's inequality, we have

    $ |Ω|v|p(x)2vutdx|γ||ut||22+14γΩ|v|2p(x)2dxγ||ut||22+14γ[Ω|v|2p2dx+Ω|v|2p+2dx]γ||ut||22+C4γ[||v||2p22+||v||2p+22],
    $

    thus, $ (3.25) $ becomes

    $ ||ut||22+||ut||22+l||Δu||22λ0+2t0Ω|v|p(x)2vutdxdτλ0+2γTsup(0,T)||ut||22+TC2γsup(0,T)[||v||2p22+||v||2p+22],
    $

    hence, we have

    $ sup(0,T)||ut||22+sup(0,T)||ut||22+lsup(0,T)||Δu||22λ0+2γTsup(0,T)||ut||22+TC2γsup(0,T)[||v||2p2H+||v||2p+2H],
    $

    where $ \lambda_{0} = ||u_{1}||_{2}^{2}+||\triangle u_{1}||_{2}^{2}+||\Delta u_{0}||_{2}^{2} $, choosing $ \gamma = \frac{1}{2T} $ such that

    $ ||u||2Hλ0+T2Csup(0,T)[||v||2p2H+||v||2p+2H].
    $

    For any $ v\in M_{T} $, by choosing $ M $ large enough so that

    $ ||u||2Hλ0+2T2CM2(p+1)M2,
    $

    and $ T > 0 $, sufficiently small so that

    $ T\leq\sqrt{\frac{M^{2}-\lambda_{0}}{2CM^{2(p^{+}-1)}}}, $

    we obtain $ ||u||_{\mathscr H}\leq M $, which shows that $ S(M_{T})\subset M_{T} $.

    Let $ v_{1}, v_{2}\in M_{T}, u_{1} = S(v_{1}), u_{2} = S(v_{2}), u = u_{1}-u_{2} $, then $ u $ satisfies

    $ {utt+2u+2uttt0g(tτ)2u(τ)dτ+|u1t|m(x)2u1t|u2t|m(x)2u2t=|v1|p(x)2v1|v2|p(x)2v2,(x,t)Ω×(0,T),u(x,t)=uν(x,t)=0,(x,t)Ω×(0,T),u(x,0)=0, ut(x,0)=0,xΩ.
    $

    Multiplying by $ u_{t} $ and integrating over $ \Omega\times(0, t) $, we obtain

    $ 12||ut||22+12(1t0g(τ)dτ)||u||22+12||ut||22+12(gu)+t0Ω[|u1t|m(x)2u1t|u2t|m(x)2u2t](u1tu2t)dxdτt0Ω(f(v1)f(v2))utdxdτ,
    $
    (3.26)

    where $ f(v) = |v|^{p(x)-2}v $. From $ (1.6) $ and $ (3.24) $, we obtain

    $ 12||ut||22+l2||u||22+12||ut||22+12(gu)t0Ω(f(v1)f(v2))utdxdτ.
    $
    (3.27)

    Now, we evaluate

    $ I = \int_{\Omega}|(f(v_{1})-f(v_{2}))||u_{t}|dx = \int_{\Omega}|f'(\xi)||v||u_{t}|dx, $

    where $ v = v_{1}-v_{2} $ and $ \xi = \alpha v_{1}+(1-\alpha)v_{2} $, $ 0\leq\alpha\leq1 $. Thanks to Young's inequality and Hölder's inequality, we have

    $ Iδ2||ut||22+12δΩ|f(ξ)|2|v|2dxδ2||ut||22+(p+1)22δΩ|ξ|2(p(x)2)|v|2dxδ2||ut||22+(p+1)22δ(Ω|v|2nn2dx)n2n[Ω|ξ|n(p(x)2)dx]2nδ2||ut||22+(p+1)22δ(Ω|v|2nn2dx)n2n[(Ω|ξ|n(p+2)dx)2n+(Ω|ξ|n(p2)dx)2n]δ2||ut||22+(p+1)2C2δ||Δv||22[||ξ||2(p+2)2+||ξ||2(p2)2]δ2||ut||22+(p+1)2C2δ||Δv||22(M2(p+2)+M2(p2)).
    $
    (3.28)

    Inserting $ (3.28) $ into $ (3.27) $, choosing $ \delta $ small enough, we obtain

    $ ||u||_{\mathscr H}^{2}\leq\frac{(p^{+}-1)^{2}CT}{\delta}(M^{2(p^{-}-2)}+M^{2(p^{+}-2)})||v||_{\mathscr H}^{2}, $

    taking $ T $ small enough so that $ \frac{(p^{+}-1)^{2}CT}{\delta}(M^{2(p^{-}-2)}+M^{2(p^{+}-2)}) < 1 $, we conclude

    $ ||u||_{\mathscr H}^{2} = ||S(v_{1})-S(v_{2})||_{\mathscr H}^{2}\leq||v_{1}-v_{2}||_{\mathscr H}^{2}, $

    thus, the contraction mapping principle ensures the existence of a weak solution to Problem $ (1.1) $. This completes the proof.

    In this section, we show that the solution to Problem $ (1.1) $ blows up in finite time when the initial energy lies in positive as well as nonpositive. For this task, we define

    $ E(t)=12||ut||22+12(1t0g(τ)dτ)||u||22+12||ut||22+12(gu)Ω1p(x)|u|p(x)dx,
    $
    (4.1)

    by the definition of $ E(t) $, we also have

    $ E(t)=Ω|ut|m(x)dx+12(gu)12g(t)||u||220.
    $
    (4.2)

    Now, we set

    $ B_{1} = \max\left\{1, \frac{B}{l^{\frac{1}{2}}}\right\}, \ \ \lambda_{1} = \left(B_{1}^{2}\right)^{\frac{-2}{p^{-}-2}}, \ \ E_{1} = (\frac{1}{2}-\frac{1}{p^{-}})(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}}, $

    and

    $ H(t)=E2E(t),
    $
    (4.3)

    where the constant $ E_{2}\in(E(0), E_{1}) $ will be discussed later, and $ B $ is the best constant of the Sobolev embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{p(x)}(\Omega) $. It follows from $ (4.2) $ that

    $ H(t)=E(t)0,
    $
    (4.4)

    and $ H(t) $ is a non$ - $decreasing function.

    To prove Theorem $ 4.1 $, we need the following two lemmas:

    Lemma 4.1. Suppose that $ (1.6) $ holds and the exponents $ m(x) $ and $ p(x) $ satisfy condition $ (1.4) $ and $ (1.5) $. Assume further that

    $ E(0) < E_{1} \ \ and\ \ \lambda_{1} < \lambda(0) = B_{1}^{2}l||\triangle u_{0}||_{2}^{2}, $

    then there exists a constant $ \lambda_{2} > \lambda_{1} $ such that

    $ B21l||u||22λ2,  t0.
    $
    (4.5)

    Proof. Using $ (1.6) $, $ (4.1) $, Lemma $ 2.4 $, and the embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{p(x)}(\Omega) $, we find that

    $ E(t)12(1t0g(τ)dτ)||u||22Ω1p(x)|u|p(x)dxl2||u||221pΩ|u|p(x)dxl2||u||221pmax{||u||pp(x),||u||p+p(x)}l2||u||221pmax{Bp||u||p2,Bp+||u||p+2}l2||u||221pmax{Bp1lp2||u||p2,Bp+1lp+2||u||p+2}12B21λ1pmax{λp2,λp+2}:=G(λ),
    $
    (4.6)

    where $ \lambda: = \lambda(t) = B_{1}^{2}l||\triangle u||_{2}^{2}. $ Analyzing directly the properties of $ G(\lambda) $, we deduce that $ G(\lambda) $ satisfies the following properties:

    $ G'(\lambda) = {12B21p+2pλp+22<0,  λ>1,12B2112λp22, 0<λ<1, 
    $
    $ G'_{+}(1) = \frac{1}{2B_{1}^{2}}-\frac{p^{+}}{2p^{-}} < 0, \ \ G'_{-}(1) = \frac{1}{2B_{1}^{2}}-\frac{1}{2} < 0, $
    $ G'(\lambda_{1}) = 0, \ \ \ \ 0 < \lambda_{1} < 1. $

    It is easily verified that $ G(\lambda) $ is strictly increasing for $ 0 < \lambda < \lambda_{1} $, strictly decreasing for $ \lambda_{1} < \lambda $, $ G(\lambda)\rightarrow -\infty $ as $ \lambda\rightarrow +\infty $, and $ G(\lambda_{1}) = E_{1} $. Since $ E(0) < E_{1} $, there exists a $ \lambda_{2} > \lambda_{1} $ such that $ G(\lambda_{2}) = E(0) $. By $ (4.6) $, we see that $ G(\lambda(0))\leq E(0) = G(\lambda_{2}) $, which implies $ \lambda(0)\geq\lambda_{2} $ since the condition $ \lambda(0) > \lambda_{1}. $ To prove $ (4.5) $, we suppose by contradiction that for some $ t_{0} > 0 $, $ \lambda_{t_{0}} = B_{1}^{2}l||\triangle u(t_{0})||_{2}^{2} < \lambda_{2} $. The continuity of $ B_{1}^{2}l||\triangle u||_{2}^{2} $ illustrates that we could choose $ t_{0} $ such that $ \lambda_{1} < \lambda_{t_{0}} < \lambda_{2} $, then we have $ E(0) = G(\lambda_{2}) < G(\lambda_{t_{0}})\leq E(t_{0}) $. This is a contradiction. The proof is completed.

    Lemma 4.2. Let the assumption in Lemma $ 4.1 $ be satisfied. For $ t\in[0, T) $, we have

    $ 0<H(0)H(t)1pρp(x)(u).
    $

    Proof. $ (4.4) $ indicates that $ H(t) $ is nondecreasing with respect to $ t $, thus

    $ H(t)\geq H(0) = E_{2}-E(0) > 0, \ \ \forall t\in[0, T). $

    It follows from $ (1.6) $, $ (4.1) $, and Lemma $ 4.1 $ that

    $ H(t)=E2E(t)=E212||ut||2212(1t0g(τ)dτ)||u||2212(gu)12||ut||22+Ω1p(x)|u|p(x)dxE1l2||u||22+Ω1p(x)|u|p(x)dxE112B21λ2+Ω1p(x)|u|p(x)dxE112B21λ1+Ω1p(x)|u|p(x)dxΩ1p(x)|u|p(x)dx1pρp(x)(u).
    $

    The proof is completed.

    Our blow-up result reads as follows:

    Theorem 4.3. Suppose that

    $ 2\leq m^{-}\leq m(x)\leq m^{+} < p^{-}\leq p(x)\leq p^{+}\leq\frac{2(n-3)}{n-4}, $

    and

    $ 1l=0g(τ)dτ<p21p21+12p,
    $
    (4.7)

    hold, if the following conditions

    $ E(0) < \frac{1}{2}(\frac{1}{2}-\frac{1}{p^{-}})\left(1-\frac{1}{p^{-}(p^{-}-2)}\frac{1-l}{l}\right)(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}} \ \ and\ \ \lambda_{1} < \lambda(0) = B_{1}^{2}l||\triangle u_{0}||_{2}^{2}, $

    are satisfied, then there exists $ T^{\ast} < +\infty $ such that

    $ limtT(||ut||22+||ut||22+||u||22+||u||p+p+)=+.
    $
    (4.8)

    Proof. Assume by contradiction that $ (4.8) $ does not hold true, then for $ \forall T^{\ast} < +\infty $ and all $ t\in[0, T^{\ast}] $, we get

    $ ||ut||22+||ut||22+||u||22+||u||p+p+C,
    $
    (4.9)

    where $ C_{\ast} $ is a positive constant.

    Now, we define $ L(t) $ as follows:

    $ L(t)=H1α(t)+ϵΩutudx+ϵΩutudx,
    $
    (4.10)

    where $ \varepsilon > 0 $, small enough to be chosen later, and

    $ 0αmin{pm+p(m+1),p22p}.
    $

    The remaining proof will be divided into two steps.

    $ \textbf{Step} $ $ \textbf{1:} $ $ \textbf{Estimate} $ $ \textbf{for} $ $ \textbf{L'(t)}. $ By taking the derivative of $ (4.10) $ and using $ (1.1) $, we obtain

    $ L(t)=(1α)Hα(t)[Ω|ut|m(x)dx12(gu)+12g(t)||u||22]+ϵ||ut||22+ϵΩuttudx+ϵ||ut||22ϵ||u||22+ϵΩt0g(tτ)u(τ)dτudxϵΩ|ut|m(x)2utudx+ϵΩ|u|p(x)dxϵΩuttudx(1α)Hα(t)Ω|ut|m(x)dx+ϵ||ut||22ϵ||u||22+ϵΩt0g(tτ)u(τ)dτudxϵΩ|ut|m(x)2utudx+ϵΩ|u|p(x)dx+ϵ||Δut||22,
    $

    applying Hölder's inequality and Young's inequality, we have

    $ ϵΩt0g(tτ)Δu(τ)Δu(t)dτdx=ϵΩt0g(tτ)Δu(t)(Δu(τ)Δu(t))dτdx+ϵt0g(tτ)dτ||Δu||22ϵt0g(tτ)||Δu(τ)Δu(t)||2||Δu(t)||2dτ+ϵt0g(tτ)dτ||Δu||22ϵp(1ε1)2(gu)+ϵ(112p(1ε1))t0g(τ)dτ||Δu||22,
    $

    where $ 0 < \varepsilon_{1} < \frac{p^{-}-2}{p^{-}} $, then

    $ L(t)(1α)Hα(t)Ω|ut|m(x)dx+ϵ||ut||22ϵ||Δu||22+ϵ||Δut||22ϵΩ|ut|m(x)2utudx+ϵΩ|u|p(x)dxϵp(1ε1)2(gu)+ϵ(112p(1ε1))t0g(τ)dτ||Δu||22,
    $

    rewriting $ (4.7) $ to $ (\frac{p^{-}}{2}-1)l-\frac{1}{2p^{-}}(1-l) > 0 $, using $ (4.1) $ and $ (4.3) $ to substitute for $ (g\diamond \bigtriangleup u) $, choosing $ \varepsilon_{1} > 0 $ sufficiently small, we obtain

    $ L(t)(1α)Hα(t)Ω|ut|m(x)dx+ϵp(1ε1)H(t)+(ϵ+ϵp(1ε1)2)(||ut||22+||ut||22)+ϵ{(p(1ε1)21)(1t0g(τ)dτ)12p(1ε1)t0g(τ)dτ}||u||22ϵp(1ε1)E2ϵΩ|ut|m(x)2utudx+ϵε1Ω|u|p(x)dx(1α)Hα(t)Ω|ut|m(x)dx+ϵp(1ε1)H(t)+(ϵ+ϵp(1ε1)2)(||ut||22+||ut||22)+ϵ{(p(1ε1)21)l212p(1ε1)1l2}lλ2B21ϵp(1ε1)E2ϵΩ|ut|m(x)2utudx+ϵ{(p(1ε1)21)l212p(1ε1)1l2}||u||22+ϵε1Ω|u|p(x)dx.(1α)Hα(t)Ω|ut|m(x)dx+ϵp(1ε1)H(t)+(ϵ+ϵp(1ε1)2)(||ut||22+||ut||22)+ϵ{(p(1ε1)21)l212p(1ε1)1l2}l(B21)pp2ϵp(1ε1)E2ϵΩ|ut|m(x)2utudx+ϵ{(p(1ε1)21)l212p(1ε1)1l2}||u||22+ϵε1Ω|u|p(x)dx.
    $
    (4.11)

    $ \textbf{Step} $ $ \textbf{1.1:} $ $ \textbf{Estimate} $ $ \textbf{for} $ $ \epsilon\frac{\left\{\left(\frac{p^{-}(1-\varepsilon_{1})}{2}-1\right)\frac{l}{2}-\frac{1}{2p^{-}(1-\varepsilon_{1})}\frac{1-l}{2}\right\}}{l}(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}}-\epsilon p^{-}(1-\varepsilon_{1})E_{2}. $ It follows from the condition in Theorem $ 3.1 $ that

    $ E(0) < \frac{1}{2}(\frac{1}{2}-\frac{1}{p^{-}})\left(1-\frac{1-l}{p^{-}(p^{-}-2)l}\right)(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}} = \frac{(\frac{p^{-}}{2}-1)\frac{l}{2}-\frac{1}{2p^{-}}\frac{(1-l)}{2}}{lp^{-}}(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}} < E_{1}, $

    here, we can take $ \varepsilon_{1} > 0 $ sufficiently small and choose $ E_{2}\in(E(0), E_{1}) $ sufficiently close to $ E(0) $ such that

    $ ϵ(p(1ε1)21)l212p(1ε1)(1l)2l(B21)pp2ϵ(1ε1)pE2ϵ(p(1ε1)21)l212p(1ε1)(1l)2l(B21)pp2ϵ(1ε1)p(p21)l212p(1l)2lp(B21)pp20.
    $
    (4.12)

    Therefore, we obtain by combining $ (4.11) $ and $ (4.12) $,

    $ L(t)(1α)Hα(t)Ω|ut|m(x)dx+ϵp(1ε1)H(t)+(ϵ+ϵp(1ε1)2)(||ut||22+||ut||22)+ϵε1Ω|u|p(x)dx+ϵ{(p(1ε1)21)l212p(1ε1)1l2}||u||22ϵΩ|ut|m(x)2utudx.
    $
    (4.13)

    $ \textbf{Step} $ $ \textbf{1.2:} $ $ \textbf{Estimate} $ $ \textbf{for} $ $ -\epsilon \int_{\Omega}|u_{t}|^{m(x)-2}u_{t}udx. $ Applying Young's inequality with $ \varepsilon_{2} > 1 $, the embedding $ L^{p(x)}(\Omega)\hookrightarrow L^{m(x)}(\Omega) $, Lemma $ 2.4 $ and Lemma $ 4.2 $, we easily have

    $ |Ω|ut|m(x)2utudx|Ω|ut|m(x)1Hαm(x)1m(x)(t)Hαm(x)1m(x)(t)|u|dxε2Hα(t)Ω|ut|m(x)dx+1εm12Ω|u|m(x)Hα(m(x)1)(t)dxε2Hα(t)Ω|ut|m(x)dx+2Cα(mm+)1εm12Hα(m+1)(t)Ω|u|m(x)dxε2Hα(t)Ω|ut|m(x)dx+C2εm12Hα(m+1)(t)max{||u||m+p(x),||u||mp(x)},
    $
    (4.14)

    where $ C_{1} = \min\left\{H(0), 1\right\} $, $ C_{2} = 2(1+|\Omega|)^{m^{+}}C_{1}^{\alpha(m^{-}-m^{+})} $. Next, we have

    $ ||u||m+p(x)max{(Ω|u|p(x)dx)m+p+,(Ω|u|p(x)dx)m+p}max{[pH(t)]m+p+m+p,1}(Ω|u|p(x)dx)m+p,
    $

    and

    $ ||u||mp(x)max{[pH(t)]mp+m+p,[pH(t)]mm+p}(Ω|u|p(x)dx)m+p,
    $

    which illustrate

    $ max{||u||m+p(x),||u||mp(x)}C3(Ω|u|p(x)dx)m+p,
    $

    where $ C_{3} = 2\min\left\{p^{-}H(0), 1\right\}^{\frac{m^{-}}{p^{+}}-\frac{m^{+}}{p^{-}}} $. Recalling $ 0 < \alpha\leq\frac{p^{-}-m^{+}}{p^{-}(m^{+}-1)} $ and Lemma $ 4.2 $, apparently,

    $ Hα(m+1)(t)max{||u||m+p(x),||u||mp(x)}C3Hα(m+1)(t)(Ω|u|p(x)dx)m+pC3Hα(m+1)+m+p1(t)Hα(m+1)+m+p1(0)H1m+p(t)Hα(m+1)+m+p1(0)(Ω|u|p(x)dx)m+pC3(1p)1m+p(Ω|u|p(x)dx)1m+pHα(m+1)+m+p1(0)(Ω|u|p(x)dx)m+pC3(1p)1m+pCα(m+1)+m+p11Ω|u|p(x)dx,
    $
    (4.15)

    it follows from $ (4.13) $, $ (4.14) $, and $ (4.15) $ that

    $ L(t)(1αϵε2)Hα(t)Ω|ut|m(x)dx+(ϵ+ϵp(1ε1)2)(||ut||22+||ut||22)+ϵ(1ε1)pH(t)+ϵ(ε1Cα(m+1)+m+p11C2C3(1p)1m+pεm12)Ω|u|p(x)dx+ϵ{(p(1ε1)21)l212p(1ε1)1l2}||u||22,
    $

    let us fix the constant $ \varepsilon_{2} $ so that

    $ \varepsilon_{1} > \frac{C_{1}^{\alpha(m^{+}-1)+\frac{m^{+}}{p^{-}}-1}C_{2}C_{3}(\frac{1}{p^{-}})^{1-\frac{m^{+}}{p^{-}}}}{\varepsilon_{2}^{m^{-}-1}}, $

    and then choose $ \epsilon $ so small that $ 1-\alpha > \epsilon\varepsilon_{1} $. Therefore, we obtain

    $ L(t)M1(H(t)+||u||22+||ut||22+||ut||22+Ω|u|p(x)dx),
    $
    (4.16)

    where

    $ M1=ϵmin{(1+p(1ε1)2),(1ε1)p,ε1Cα(m+1)+m+p11C2C3(1p)1m+pεm12,,(p(1ε1)21)l212p(1ε1)1l2}.
    $

    Inequalities $ (4.16) $ and Lemma $ 4.2 $ imply $ L(t)\geq L(0). $ Therefore, for a sufficiently small $ \epsilon $, we have

    $ L(0) = H^{1-\alpha}(0)+\epsilon\int_{\Omega}u_{1}u_{0}dx+\epsilon\int_{\Omega}\triangle u_{1}\triangle u_{0}dx > 0. $

    $ \textbf{Step} $ $ \textbf{2:} $ $ \textbf{A} $ $ \textbf{differential} $ $ \textbf{inequality} $ $ \textbf{for} $ $ \textbf{L(t)}. $ Applying Hölder's inequality, Young's inequality and the embedding $ L^{p(x)}(\Omega)\hookrightarrow L^{2}(\Omega) $, we easily obtain

    $ |Ωutudx|11α(ut2u2)11α(1+|Ω|)11α||ut||11α2||u||11αp(x)(1+|Ω|)11αμ||ut||11αμ2+(1+|Ω|)11αν||u||11ανp(x),
    $
    (4.17)

    where $ \frac{1}{\mu}+\frac{1}{\nu} = 1.\ $Choosing $ \mu = 2(1-\alpha) > 1 $, then $ \nu = \frac{2(1-\alpha)}{2(1-\alpha)-1}, \ $further, $ (4.17) $ can be rewritten as

    $ |Ωutudx|11α(1+|Ω|)11αμ||ut||22+(1+|Ω|)11αν||u||22(1α)1p(x),
    $
    (4.18)

    recalling $ 0 < \alpha < \frac{p^{-}-2}{2p^{-}} $, we obtain

    $ ||u||22(1α)1p(x)max{(Ω|u|p(x)dx)2p[2(1α)1],(Ω|u|p(x)dx)2p+[2(1α)1]}{[pH(t)]2p[2(1α)1]p[2(1α)1],[pH(t)]2p+[2(1α)1]p+[2(1α)1]}Ω|u|p(x)dxC4Ω|u|p(x)dx,
    $
    (4.19)

    with $ C_{4} = \min\{p^{-}H(0), 1\}^{\frac{2-p^{+}[2(1-\alpha)-1]}{p^{+}[2(1-\alpha)-1]}} $. Inserting $ (4.19) $ into $ (4.18) $, we obtain

    $ |Ωutudx|11α(1+|Ω|)11αμ||ut||22+(1+|Ω|)11ανC4Ω|u|p(x)dx.
    $
    (4.20)

    We now estimate

    $ |Ωutudx|11α||ut||11α2||Δu||11α2C11αC11αH(0)H(t),
    $
    (4.21)

    therefore, combining $ (4.20) $ and $ (4.21) $, we obtain

    $ L11α(t)=(H1α(t)+ϵΩutudx+ϵΩutudx)11αM2(H(t)+||ut||22+||ut||22+||u||22+Ω|u|p(x)dx),
    $
    (4.22)

    where

    $ M2=max{211α(211α+ϵ11αC11αH(0)), 221αϵ11α(1+|Ω|)11αμ, 221αϵ11α(1+|Ω|)11ανC4}.
    $

    Combining $ (4.16) $ and $ (4.22) $, we arrive at

    $ L(t)M1M2L11α(t),t0.
    $
    (4.23)

    A simple integration of $ (4.23) $ over $ (0, t) $ yields

    $ Lα1α(t)1Lαα1(0)M1M2α1αt,
    $

    this shows that $ L(t) $ blows up in finite time

    $ TM2M11ααLαα1(0),
    $

    furthermore, one gets from $ (4.22) $ that

    $ \lim\limits_{t\rightarrow T^{\ast-}}\left(H(t)+||u_{t}||_{2}^{2}+||\triangle u_{t}||_{2}^{2}+||\triangle u||_{2}^{2}+\int_{\Omega}|u|^{p(x)}dx\right) = +\infty, $

    it easily follows that

    $ \int_{\Omega}|u|^{p(x)}dx\leq \int_{\{|u|\geq1\}}|u|^{p^{+}}dx+\int_{\{|u| < 1\}}|u|^{p^{-}}dx\leq||u||_{p^{+}}^{p^{+}}+|\Omega|, $

    and using Lemma $ 4.2 $, we obtain

    $ \lim\limits_{t\rightarrow T^{\ast-}}\left(||u_{t}||_{2}^{2}+||\triangle u_{t}||_{2}^{2}+||\triangle u||_{2}^{2}+||u||_{p^{+}}^{p^{+}}\right) = +\infty, $

    this leads to a contradiction with $ (4.9) $. Thus, the solution to Problem $ (1.1) $ blows up in finite time.

    Ying Chu: Methodology, Wring-original draft, Writing-review editing; Bo Wen and Libo Cheng: Methodology, Writing-original draft.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work was supported by Science and Technology Development Plan Project of Jilin Province, China (20240101307JC).

    The authors declare there is no conflict of interest.

    [1] Stoeck K, Schmitz M, Ebert E, et al. (2014) Immune responses in rapidly progressive dementia: a comparative study of neuroinflammatory markers in Creutzfeldt-Jakob disease, Alzheimer's disease and multiple sclerosis. J Neuroinflam 11: 170-178. doi: 10.1186/s12974-014-0170-y
    [2] Kojima G, Tatsuno BK, Inaba M, et al. (2013) Creutzfeldt-Jakob disease: a case report and differential diagnosis. Hawai'i J Med Public Health 72: 136-139.
    [3] Manuelidis EE, Manuelidis L (1989) A clinical series with 13% of Alzheimer's disease actually CJD. Alz Dis Assoc Disorders 3: 100-109. doi: 10.1097/00002093-198903010-00009
    [4] Bastian FO, McDermont ME, Perry AS, et al. (2005) Safe method for isolation of prion protein and diagnosis of Creutzfeldt-Jakob disease. J Virol Methods 130: 133-139. doi: 10.1016/j.jviromet.2005.06.024
    [5] Nicolson GI (2008) Chronic bacterial and viral infections in neurodegenerative and neurobehavioral diseases. Lab Med 39: 291-299. doi: 10.1309/96M3BWYP42L11BFU
    [6] Bastian FO (1991) Author, Creutzfeldt-Jakob Disease and Other Transmissible Spongiform Encephalopathies, New York, Mosby/Year Book 256 pp
    [7] Matthews WB (1978) Creutzfeldt-Jakob disease. Postgrad Med J 54: 591-594. doi: 10.1136/pgmj.54.635.591
    [8] Manuelidis EE, De Figuriredo JM, Kim JH, et al. (1988) Transmission studies from blood of Azheimer disease patients and healthy relatives. Proc Natl Acad Sci (USA) 85: 4898-4901. doi: 10.1073/pnas.85.13.4898
    [9] Manuelidis EE, Gorgacz EJ, Manuelidis L (1978) Transmission of Creutzfeldt-Jakob disease with scrapie-like syndromes to mice. Nature 271: 778-779.
    [10] Hainfellner JA, Wanschitz J, Jellinger K, et al. (1998) Coexistence of Alzheimer-type neuropathology in Creutzfeldt_Jakob disease. Acta Neuropathol 96: 116-122. doi: 10.1007/s004010050870
    [11] Solito E, Sastre M (2012) Microglia function in Alzheimer's disease. Frontiers Pharmacol 3: 1-10.
    [12] Tousseyn T, Bajsarowicz K, Sanchez H, et al. (2015) Prion disease induces Alzheimer disease-like neuropathologic changes. J Neuropathol Exp Neurol 74: 873-888.
    [13] Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Current Med Chem 14: 1189-1197. doi: 10.2174/092986707780597961
    [14] Mattson MP (2002) Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer's disease. J Neurovirol 8: 539-550. doi: 10.1080/13550280290100978
    [15] Garcao P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-β and prion peptides. J Neurosci Res 84: 182-193. doi: 10.1002/jnr.20870
    [16] Lee DY, Lee J, Sugden B (2009) The unfolded protein response and autophagy: herpes viruses rule! J Virol 83: 1168-1172.
    [17] Unterberger U, Hoftberger R, Gelpi E, et al. (2006) Endoplasmic reticulum stress features are prominent in Alzheimer's disease but not in prion disease in vivo. J Neuropathol Exp Neurol 65: 348-357. doi: 10.1097/01.jnen.0000218445.30535.6f
    [18] Sorce S, Nuvolone M, Keller A, et al. (2014) The role of NADPH oxidase NOX2 in prion pathogenesis. PLoS Pathogens 10: e1004531.
    [19] Bastian FO (2014) Cross-roads in research on neurodegenerative diseases. J Alzheimer's Dis Parkinsonism 4: 141. doi:10.4172/21610460.1000141.
    [20] Moreno JA, Radford H, Peretti D, et al. (2012) Sustained translational repression of eIF2α mediates prion neurodegeneration. Nature 485: 507-511.
    [21] Greenlee JJ, Greenlee MH (2015) The transmissible spongiform encephalopathies of livestock. Ilar J 56: 7-25. doi: 10.1093/ilar/ilv008
    [22] Baker CA, Martin D, Manuelidis L (2002) Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 76: 10905-10913. doi: 10.1128/JVI.76.21.10905-10913.2002
    [23] Murali A, Maue RA, Dolph PJ (2014) Reversible symptoms and clearance of mutant prion protein in an inducible model of a genetic prion disease in Drosophilia melanogaster. Neurobiol Dis 67: 71-78. doi: 10.1016/j.nbd.2014.03.013
    [24] Sala I, Marquie M, Sanchez-Saudinos MB, et al. (2012) Rapidy progressive dementia: experience in a tertiary care medical center. Alzheimer Dis Assoc Disorders 26: 267-271. doi: 10.1097/WAD.0b013e3182368ed4
    [25] Armitage WJ, Tullo AB, Ironside JW (2009) Risk of Creutzfeldt-Jakob disease transmission by ocular surgery and tissue transplantation. Eye 23: 1926-1930. doi: 10.1038/eye.2008.381
    [26] Wemheuer WM, Benestad SL, Wrede A, et al. (2009) Similarities between forms of sheep scrapie and Creutzfeldt-Jakob disease are encoded by distinct prion types. Amer J Pathol 175: 2566-2573. doi: 10.2353/ajpath.2009.090623
    [27] Cassard H, Torres JM, Lacroux C, et al. (2014) Evidence for zoonotic potential of ovine scrapie prions. Nature communications 5: 5821 doi:10.1038/ncomms6821.
    [28] Merz PA, Somerville RA, Wisniewski HM, et al. (1983) Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature 306: 474-476.
    [29] Wisniewski T, Aucouturier P, Soto C, et al. (1998) The prionoses and other conformational disorders. Amyloid 5: 212-224. doi: 10.3109/13506129809003848
    [30] Serrano-Pozo A, Frosch MP, Masliah E, et al. (2011) Neuropathological alterations in Alzheimer Disease. Cold Spring Harb Perspect Med 1: a006189.
    [31] Kessels HW, Nguyen LN, Nabavi S, et al. (2010) The prion protein as a receptor for amyloid-β. Nature 466: 7308 E3-4.
    [32] Kumar A, Pate KM, Moss MA, et al. (2014) Self-propagative replication of A-β oligomers suggests potential transmissibility in Alzheimer disease. PLoS ONE 9: e111492. doi: 10.1371/journal.pone.0111492
    [33] Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286: 15317-15331.
    [34] Liu L, Drouet V, Wu JW, et al. (2012) Trans-synaptic spread of Tau pathology in vivo. PloS ONE 7: e31302. Doi:10.1371. doi: 10.1371/journal.pone.0031302
    [35] Eisele YS, Bolmont T, Heikenwalder M, et al. (2009) Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. PNAS 106: 12926-12931. doi: 10.1073/pnas.0903200106
    [36] Morales R, Duran-Aniotz C, Castilla J, et al. (2011) De novo induction of amyloid-β deposition in vivo. Mol Psychiatry 17: 1347-1353.
    [37] Volpicelli-Daley LA, Luk KC, Patel TP, et al. (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72: 57-71. doi: 10.1016/j.neuron.2011.08.033
    [38] Luk KC, Kehm VM, Zhang B, et al. (2012) Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 209: 975-986. doi: 10.1084/jem.20112457
    [39] Stöhr J, Watts JC, Mensinger ZL, et al. Purified and synthetic Alzheimer's amyloid β (Aβ) prions. PNAS 109: 11025-11030.
    [40] Ghoshal N, Cali I, Perrin RJ, et al. (2009) Co-distribution of amyloid β plaques and spongiform degeneration in familial Creutzfeldt-Jakob disease with the E200K-129M haplotype. Arch Neurol 66: 1240-1246.
    [41] Salvadores N, Shahnawaz M, Scarpini E, et al. (2014) Detection of misfolded Aβ oligonmers for sensitive biochemical diagnosis of Alzheimer's disease. Cell Reports 7: 261-268. doi: 10.1016/j.celrep.2014.02.031
    [42] Morales R, Moreno-Gonzalez I, Soto C (2013) Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases. PLOS 9: e1003537. doi: 10.1371/journal.pgen.1003537
    [43] Chi EY, Frey SL, Winans A, et al. (2010) Amyloid-β fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly. Biophy J 98: 2299-2308. doi: 10.1016/j.bpj.2010.01.056
    [44] Tateishi J, Kitamoto T, Hoque MZ, et al. (1996) Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 46: 532-537. doi: 10.1212/WNL.46.2.532
    [45] Kovacs GG, Seguin J, Quadrio I, et al. (2011) Genetic Creutzfeldt-Jakob disease associated with the E200K mutation: characterization of a complex proteinopathy. Acta Neuropathologica 121: 39-57. doi: 10.1007/s00401-010-0713-y
    [46] Vital A, Canron M-H, Gil R, et al. (2007) A sporadic case of Creutzfeldt-Jakob disease with β-amyloid deposits and α-synuclein inclusions. Neuropathology 27: 273-277. doi: 10.1111/j.1440-1789.2007.00755.x
    [47] Kasai T, Tokuda T, Ishii R, et al. (2014) Increased α-synuclein levels in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. J Neurol 261: 7334-7337.
    [48] Zhang M, Hu R, Chen H, et al. (2015) Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid peptide. Phys Chem Chem Phys 17: 23245-23256. doi: 10.1039/C5CP03329B
    [49] O'Nuallain B, Williams AD, Westermark P, et al. (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279: 17490-17499. doi: 10.1074/jbc.M311300200
    [50] Westermark P, Westermark GT (2013) Seeding and cross-seeding in amyloid diseases, in Zucker M, Christen Y (eds.) Proteopathic Seeds and Neurodegenerative Diseases, Research and Perspectives in Alzheimer' Disease, Berlin, Springer-Verlag pp. 47-60.
    [51] Zhou Y, Smith D, Leong BJ, et al. (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287: 35092-35103. doi: 10.1074/jbc.M112.383737
    [52] Prusiner SB (1987) Prions causing degenerative neurological diseases. Ann Rev Med 38: 381-398. doi: 10.1146/annurev.me.38.020187.002121
    [53] Vila-Vicosa D, Campos SR, Baptista AM, et al. (2012) Reversibility of prion misfolding: insights from constant –pH molecular dynamics simulations. J Physical Chem 116: 8812-8821. doi: 10.1021/jp3034837
    [54] Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148: 1188-1203. doi: 10.1016/j.cell.2012.02.022
    [55] Mayer RJ, Landon M, Laszlo L, et al. (1992) Protein processing in lysosomes: the new therapeutic target in neurodegenerative disease. Lancet 340: 156-159. doi: 10.1016/0140-6736(92)93224-B
    [56] Rigter A, Priem J, Langeveld JP, et al. (2011) Prion protein self-interaction in prion disease therapy approaches. Vet Quarterly 31: 115-128. doi: 10.1080/01652176.2011.604976
    [57] Safar JG (2012) Molecular pathogenesis of sporadic prion diseases in man. Prion 6: 108-115. doi: 10.4161/pri.18666
    [58] Tuite MF, Cox BS (2003) Propagation of yeast prions. Nature Rev Mol Cell Biol 4: 878-890. doi: 10.1038/nrm1247
    [59] Bellinger-Kawahara C, Diener TO, McKinley MP, et al. (1987) Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids. Virology 160: 271-274. doi: 10.1016/0042-6822(87)90072-9
    [60] Hearst JE (1981) Psoralen photochemistry and nucleic acid structure. J Investigative Dermatol 77: 39-44. doi: 10.1111/1523-1747.ep12479229
    [61] Miyazawa K, Kipkorir T, Tittman S, et al. (2012) Continuous production of prions after infectious particles are eliminated: implications for Alzheimer's disease. PLoS ONE 7: 1-8.
    [62] Sun R, Liu Y, Zhang H, et al. (2008) Quantitative recovery of scrapie agent with minimal protein from highly infectious cultures. Viral Immunol 21:293-302.
    [63] Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31: 150-155. doi: 10.1016/j.tibs.2006.01.002
    [64] Klingeborn M, Race B, Meade-White KD, et al. (2011) Lower specific infectivity of protease-resistant prion protein generated in cell-free reactions. PNAS 108: E1244-E1253. doi: 10.1073/pnas.1111255108
    [65] Manuelidis L (2011) Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. J Neurovirol 17: 131-145.
    [66] Sonati T, Reimann RR, Falsig J, et al. (2013) The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501: 102-106.
    [67] Miyazawa K, Emmerling K, Manuelidis L (2011) Replication and spread of CJD, kuru and scrapie agents in vivo and in cell culture. Virulence 2: 188-199. doi: 10.4161/viru.2.3.15880
    [68] Watarai M, Kim S, Erdenebaatar J, et al. (2003) Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198: 5-17.
    [69] Bastian FO (2005) Spiroplasma as a candidate causal agent of transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 64: 833-838.
    [70] Bastian FO (2014) The case for involvement of spiroplasma in the pathogenesis of transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 73: 104-114.
    [71] Baker C, Martin D, Manuelidis L (2002) Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 76: 10905-10913.
    [72] Marlatt MW, Bauer J, Aronica E, et al. (2014) Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plasticity 2014: 693851 1-12.
    [73] Miklossy J, Kis A, Radenovic A, et al. (2006) Β-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes. Neurobiol Aging 27: 228-236. doi: 10.1016/j.neurobiolaging.2005.01.018
    [74] Balin BJ, Little CS, Hammond CJ, et al. (2008) Chlamydophila pneumonia and the etiology of late-onset Alzheimer's disease. J Alzheimer's Dis 13: 371-380.
    [75] Poole S, Singhrao SK, Kesavalu L, et al. (2013) Determining the presence of peridontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue. J Alzheimer's Dis 36: 665-677.
    [76] Singhrao SK, Harding A, Poole S, et al. (2015) Porphyromonas gingivalis periodontal infection and it putative links with Alzheimer's disease. Mediators Inflam 2015: 137357.
    [77] Singhrao SK, Harding A, Simmons T, et al. (2014) Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer's disease. J Alzheimer's Dis 42: 723-737.
    [78] Miklossy J (2008) Chronic inflammation and amyloidogenesis in Alzheimer's disease- role of spirochetes. J Alzheimer's Dis 13: 381-391.
    [79] Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimer's Dis 45: 349-362.
    [80] Little CS, Joyce TA, Hammond CJ, et al. (2014) Detection of bacterial antigens and Alzheimer's disease-like pathology in the central nervous system of BALB/c mice following intranasal infection with a laboratory isolate of Chlamydia pneumoniae. Frontiers Aging Neurosci 6: 304. doi: 10.3389/fnagi.2014.00304 1-9.
    [81] Goto S, Anbutsu H, Fukatsu T (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Applied Environmental Microbiol 72: 4805-4810. doi: 10.1128/AEM.00416-06
    [82] Takahashi Y, Mihara H (2004) Construction of chemically and conformationally self-replicating system of amyloid-like fibrils. Bioorg Med Chem 12: 693-699. doi: 10.1016/j.bmc.2003.11.022
    [83] Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60: 131-147.
    [84] Wang X, Chapman MR (2008) Curli provide the template for understanding controlled amyloid propagation. Prion 2: 57-60. doi: 10.4161/pri.2.2.6746
    [85] Lundmark K, Westermark G, Olsen A, et al. (2005) Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. PNAS 102: 6098-6102. doi: 10.1073/pnas.0501814102
    [86] Bastian FO (1979) Spiroplasma-like inclusions in Creutzfeldt-Jakob disease. Arch Pathol Lab Med 103: 665-669.
    [87] Bastian FO, Hart MN, Cancilla PA (1981) Additional evidence of spiroplasma in Creutzfeldt-Jakob disease. Lancet 1: 660.
    [88] Gray A, Francis RJ, Scholtz CL (1980) Spiroplasma and Creutzfeldt-Jakob disease. Lancet 2, 660.
    [89] Reyes JM, Hoenig EM (1981) Intracellular spiral inclusions in cerebral cell processes in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 40: 1-8. doi: 10.1097/00005072-198101000-00001
    [90] Alexeeva I, Elliott EJ, Rollins S, et al. (2006) Absence of spiroplasma or other bacterial 16s rRNA genes in brain tissue of hamsters with scrapie. J Clin Microbiol 44: 91-97. doi: 10.1128/JCM.44.1.91-97.2006
    [91] Bastian FO, Dash S, Garry RF (2004) Linking chronic wasting disease to scrapie by comparison of Spiroplasma mirum ribosomal DNA sequences. Exp Mol Pathol 77: 49-56. doi: 10.1016/j.yexmp.2004.02.002
    [92] Bastian FO, Sanders DE, Forbes WA, et al. (2007) Spiroplasma spp. from transmissible spongiform encephalopathy brains or ticks induce spongiform encephalopathy in ruminants. J Med Microbiol 56: 1235-1242.
    [93] Bastian FO, Boudreaux CM, Hagius SD, et al. (2011) Spiroplasma found in the eyes of scrapie affected sheep. Vet Ophthalmol 14: 10-17.
    [94] Bastian FO, Purnell DM, Tully JG (1984) Neuropathology of spiroplasma infection in the rat brain. Am J Pathol 114: 496-514.
    [95] Tully JG, Bastian FO, Rose DL (1984) Localization and persistence of spiroplasmas in an experimental brain infection in suckling rats. Ann Microbiol (Paris) 135A: 111-117.
    [96] Bastian FO, Jennings R, Huff C (1987) Neurotropic Response of Spiroplasma mirum following peripheral inoculation in the rat. Ann Microbiol (Inst Pasteur) 138: 651-655. doi: 10.1016/0769-2609(87)90143-8
    [97] Jeffrey M, Scott JR, Fraser H (1991) Scrapie inoculation of mice: light and electron microscopy of the superior colliculi. Acta Neuropathol 81: 562-571.
    [98] Trachtenberg S, Gilad R (2001) A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Mol Microbiol 41: 827-848.
    [99] Bastian FO, Jennings R, Gardner W (1987) Antiserum to scrapie associated fibril protein cross-reacts with Spiroplasma mirum fibril proteins. J Clin Microbiol 25: 2430-2431.
    [100] Bastian FO, Elzer PH, Wu X (2012) Spiroplasma spp. biofilm formation is instrumental for their role in the pathogenesis of plant, insect and animal diseases. Exp Mol Pathol 93: 116-128.
    [101] Forloni G, Iussich S, Awan T, et al. (2002) Tetracyclines affect prion infectivity. PNAS 99: 10849-10854.
    [102] Guo YJ, Han J, Yao HL, et al. (2007) Treatment of scrapie pathogen 263K with tetracycline partially abolishes protease-resistant activity in vitro and reduces infectivity in vivo. Biomed Environ Sci 20: 198-202.
    [103] Haig DA, Pattison IH (1967) In-vitro growth of pieces of brain from scrapie-affected mice. J Path Bact 93: 724-727. doi: 10.1002/path.1700930243
    [104] Pattison IH (1969) Scrapie- a personal view. J Clin Pathol (Supp) 6: 110-114.
    [105] Sinclair SH, Rennoll-Bankert KE, Dumier JS (2014) Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genetics 5: 274. doi: 10.3389/fgene.2014.00274 1-10.
    [106] Di Francesco A, Arosio B, Falconi A, et al. (2015) Global changes in DNA methylation in Alzheimer's disease peripheral blodd mononuclear cells. Brain Behav Immun 45: 139-144.
    [107] Drury JL, Chung WO (2015) DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challengs. Pathogens Dis 73: 1-6.
    [108] Cal H, Xie Y, Hu L, et al. (2013) Prion protein (PrPc) interacts with histone H3 confirmed by affinity chromatography. J Chromat Analytical Tech Biomed Life Sci 929: 40-44. doi: 10.1016/j.jchromb.2013.04.003
    [109] Derail M, Mill J, Lunnon K (2014) The mitochondrial epigenome: a role in Alzheimer's disease? Epigenomics 6: 665-675. doi: 10.2217/epi.14.50
    [110] Choi HS, Choi YG, Shinn HY, et al. (2014) Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice. Biochem Biophys Res Comm 448: 157-162. doi: 10.1016/j.bbrc.2014.04.069
    [111] Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62: 1094-1156.
    [112] Nur I, Szyf M, Razin A, et al. (1985) Procaryotic and eukaryotic traits of DNA methylation in spiroplasmas. J Bacteriol 164: 19-24.
    [113] Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330: 629-632. doi: 10.1126/science.1191081
    [114] Bastian FO (2014) Cross-roads in research on neurodegenerative diseases. J Alzheimer's Dis Parkinsonism 4: 1000141.
    [115] Bleme H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2: a010272.
  • This article has been cited by:

    1. Tahir Boudjeriou, Ngo Tran Vu, Nguyen Van Thin, High Energy Blowup for a Class of Wave Equations With Critical Exponential Nonlinearity, 2025, 0170-4214, 10.1002/mma.10873
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10490) PDF downloads(1242) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog