Citation: Edès Destyl, Silvere Paul Nuiro, Pascal Poullet. Critical blowup in coupled Parity-Time-symmetric nonlinear Schrödinger equations[J]. AIMS Mathematics, 2017, 2(1): 195-206. doi: 10.3934/Math.2017.1.195
[1] | Manakov S.V, On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh. Eksp. Teor. Fiz. 65 (1973), 505-516. |
[2] | Ismail M.S and Taha T.R, Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simulat. 56 (2001), 547-562. |
[3] | Driben R and Malomed B.A, Stability of solitons in parity-time-symmetric couplers. Opt. Lett. 36 (2011), 4323-4325. |
[4] | Abdullaev F.K, Konotop V.V, Ögren M, et al. Zeno effect and switching of solitons in nonlinear couplers. Opt. Lett. 36 (2011), 4566-4568. |
[5] | Pelinovsky Dmitry E, Localization in periodic potentials, London Mathematical Society-Lecture Note Series 390 Cambridge University Press, (2011). |
[6] | Pelinovsky D.E, Zezyulin D.A and Konotop V.V, Global existence of solutions to coupled PT-symmetric nonlinear Schrödinger equations. Int. J. Theor. Phys. 54 (2015), 3920-3931. |
[7] | Suchkov S.V, Sukhorukov A.A, Huang J, et al. Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10 (2016), 177-213. |
[8] | Destyl E, Nuiro P. S and Poullet P, On the global behaviour of solutions of a coupled system of nonlinear Schrödinger equations. Stud. Appl. Math. in press, (2017). |
[9] | Tsutsumi M, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger. SIAM J. Math. Anal. 15 (1984), 317-366. |
[10] | Ohta M and Todorova G, Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 23 (2009), 1313-1325. |
[11] | Dias J-P and Figueira M, On the blowup of solutions of a Schrödinger equation with an inhomogeneous damping coeffcient. Commun. Contemp. Math. 16 (2014), 1350036-1350046. |
[12] | Bender C.M and Boettcher S, Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80 (1998), 5243-5246. |
[13] | El-Ganainy R, Makris K.G, Christodoulides D.N, et al. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32 (2007), 2632. |
[14] | Konotop V.V, Yang J and Zezyulin D.A, Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88 (2016), 035002(59). |
[15] | Kartashov Y.V, Konotop V.V and Zezyulin D.A, CPT-symmetric spin-orbit-coupled condensate. EPL. 107 (2014), 50002. |
[16] | Dias J.-P, Figueira M, Konotop V.V et al. Supercritical blowup in coupled parity-time-symmetric nonlinear Schrödinger equations. Stud. Appl. Math. 133 (2014), 422-440. |
[17] | Sulem C and Sulem P. -L, The Nonlinear Schrödinger Equation, Springer, New-York, 1999. |
[18] | Lin T.C and Wei J, Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations. Physica D. 220 (2006), 99-115. |
[19] | Jngel A and Weishäupl R.-M, Blow-up in two-component nonlinear Schrödinger systems with an external driven field. Math. Mod. Meth. App. Sci. 23 (2013), 1699-1727. |
[20] | Zhongxue Lü and Zuhan Liu, L^{2}-concentration of blow-up solutions for two-coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 380 (2011), 531-539. |
[21] | Glassey R.T, On the blowing-up of solutions to the Cauchy problem for the Nonlinear Schrödinger equation. J. Math. Phys. 18 (1977), 1794-1797. |
[22] | Linares F and Ponce G, Introduction to Nonlinear Dispersive Equations, Universitext, Springer New-York, (2009). |