Citation: Ken Shirakawa, Hiroshi Watanabe. Solvability for the non-isothermal Kobayashi–Warren–Carter system[J]. AIMS Mathematics, 2017, 2(1): 161-194. doi: 10.3934/Math.2017.1.161
[1] | M. Amar, G. Bellettini, A notion of total variation depending on a metric with discontinuous coeffcients. Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), no. 1, 91-133. |
[2] | L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. (2000). |
[3] | H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. MPS-SIAM Series on Optimization, 6. SIAM and MPS, (2006). |
[4] | V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Noordhoff International Publishing, (1976). |
[5] | G. Bellettini, G. Bouchitté, I. Fragalà, BV functions with respect to a measure and relaxation of metric integral functionals. J. Convex Anal., 6 (1999), no. 2, 349-366. |
[6] | H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies, 5. Notas de Matemática (50). North-Holland Publishing and American Elsevier Publishing, (1973). |
[7] | P. Colli, P. Laurençot, Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws. Phys. D, 111 (1998), 311-334. |
[8] | P. Colli, J. Sprekels, Glob al solution to the Penrose-Fife phase-field model with zero interfacial energy and Fourier law. Adv. Math. Sci. Appl., 9 (1999), no. 1, 383-391. |
[9] | G. Dal Maso, An Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, Ma, (1993). |
[10] | I. Ekeland, R. Temam, Convex analysis and variational problems. Translated from the French. Corrected reprint of the 1976 English edition. Classics in Applied Mathematics, 28. SIAM, Philadelphia, (1999). |
[11] | L. C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, (1992). |
[12] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, 80. Birkhäuser, (1984). |
[13] | M.-H. Giga, Y. Giga, Very singular diffusion equations: second and fourth order problems. Jpn. J. Ind. Appl. Math., 27 (2010), no. 3, 323-345. |
[14] | W. Horn, J. Sprekels, S. Zheng, Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets. Adv. Math. Sci. Appl., 6 (1996), no. 1, 227-241. |
[15] | A. Ito, N. Kenmochi, N. Yamazaki, A phase-field model of grain boundary motion. Appl. Math., 53 (2008), no. 5, 433-454. |
[16] | A. Ito, N. Kenmochi, N. Yamazaki, Weak solutions of grain boundary motion model with singularity. Rend. Mat. Appl. (7), 29 (2009), no. 1, 51-63. |
[17] | A. Ito, N.Kenmochi, N. Yamazaki, Global solvability of a model for grain boundary motion with constraint. Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), no. 1, 127-146. |
[18] | N. Kenmochi, : Systems of nonlinear PDEs arising from dynamical phase transitions. In: Phase transitions and hysteresis (Montecatini Terme, 1993), pp. 39-86, Lecture Notes in Math., 1584, Springer, Berlin, (1994). |
[19] | N. Kenmochi, M. Kubo, Weak solutions of nonlinear systems for non-isothermal phase transitions. Adv. Math. Sci. Appl., 9 (1999), no. 1, 499-521. |
[20] | N. Kenmochi, N. Yamazaki, Large-time behavior of solutions to a phase-field model of grain boundary motion with constraint. In: Current advances in nonlinear analysis and related topics, pp. 389-403, GAKUTO Internat. Ser. Math. Sci. Appl., 32, Gakkōtosho, Tokyo, (2010). |
[21] | R. Kobayashi, Y. Giga, Equations with singular diffusivity. J. Statist. Phys., 95 (1999), 1187-1220. |
[22] | R. Kobayashi, J. A. Warren, W. C. Carter, A continuum model of grain boundary. Phys. D, 140 (2000), no. 1-2, 141-150. |
[23] | R. Kobayashi, J. A.Warren, W. C. Carter, Grain boundary model and singular diffusivity. In: Free Boundary Problems: Theory and Applications, pp. 283-294, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakkōtosho, Tokyo, (2000). |
[24] | J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol I. Springer-Verlag, New York-Heidelberg, (1972). |
[25] | S. Moll, K. Shirakawa, Existence of solutions to the Kobayashi-Warren-Carter system. Calc. Var. Partial Differential Equations, 51 (2014), 621-656. DOI:10.1007/s00526-013-0689-2 doi: 10.1007/s00526-013-0689-2 |
[26] | S. Moll, K. Shirakawa, H.Watanabe, Energy dissipative solutions to the Kobayashi-Warren-Carter system. submitted. |
[27] | U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3 (1969), 510-585. |
[28] | K. Shirakawa, H. Watanabe, Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), no. 1, 139-159. DOI:10.3934/dcdss.2014.7.139 doi: 10.3934/dcdss.2014.7.139 |
[29] | K. Shirakawa, H. Watanabe, Large-time behavior of a PDE model of isothermal grain boundary motion with a constraint. Discrete Contin. Dyn. Syst. 2015, Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 1009-1018. |
[30] | K. Shirakawa, H. Watanabe, N. Yamazaki, Solvability of one-dimensional phase field systems associated with grain boundary motion. Math. Ann., 356 (2013), 301-330. DOI:10.1007/s00208-012-0849-2 doi: 10.1007/s00208-012-0849-2 |
[31] | K. Shirakawa, H. Watanabe, N. Yamazaki, Phase-field systems for grain boundary motions under isothermal solidifications. Adv. Math. Sci. Appl., 24 (2014), 353-400. |
[32] | K. Shirakawa, H. Watanabe, N. Yamazaki, Mathematical analysis for a Warren-Kobayashi-Lobkovsky-Carter type system. RIMS Kôkyûroku, 1997 (2016), 64-85. |
[33] | J. Simon, Compact sets in the space L^{p}(0; T; B). Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. |
[34] | J. Sprekels, S. Zheng, Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions. J. Math. Anal. Appl., 279 (2003), 97-110. |
[35] | A. Visintin, Models of phase transitions. Progress in Nonlinear Differential Equations and their Applications, 28, Birkhäuser, Boston, (1996). |
[36] | J. A. Warren, R. Kobayashi, A. E. Lobkovsky, W. C. Carter, Extending phase field models of solidification to polycrystalline materials. Acta Materialia, 51 (2003), 6035-6058. |
[37] | H.Watanabe, K. Shirakawa, Qualitative properties of a one-dimensional phase-field system associated with grain boundary. In: Current Advances in Applied Nonlinear Analysis and Mathematical Modelling Issues, pp. 301-328, GAKUTO Internat. Ser. Math. Sci. Appl., 36, Gakkōtosho, Tokyo, (2013). |
[38] | James A.Warren, Ryo Kobayashi, Alexander E. Lobkovsky, W. Craig Carter, Extending phase field models of solidification to polycrystalline materials. Acta Materialia, 51 (2003), 60356058. |
[39] | H. Watanabe, K. Shirakawa, Stability for approximation methods of the one-dimensional Kobayashi-Warren-Carter system. Mathematica Bohemica, 139 (2014), special issue dedicated to Equadiff 13, no. 2, 381-389. |
[40] | N. Yamazaki, Global attractors for non-autonomous phase-field systems of grain boundary motion with constraint. Adv. Math. Sci. Appl. 23 (2013), no. 1, 267-296. |