Processing math: 100%
Research article

Some specific classes of permutation polynomials over Fq3

  • Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over Fq2 have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over Fq3 of the forms similar to (xq2+xq+x+δ)q31d+1+L(x), for d=2,3,4,6, where L(x) is a linearized polynomial over Fq.

    Citation: Xiaoer Qin, Li Yan. Some specific classes of permutation polynomials over Fq3[J]. AIMS Mathematics, 2022, 7(10): 17815-17828. doi: 10.3934/math.2022981

    Related Papers:

    [1] M. Mossa Al-Sawalha, Azzh Saad Alshehry, Kamsing Nonlaopon, Rasool Shah, Osama Y. Ababneh . Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm. AIMS Mathematics, 2022, 7(11): 19739-19757. doi: 10.3934/math.20221082
    [2] Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146
    [3] Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055
    [4] Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164
    [5] Muneerah Al Nuwairan, Ahmed Gamal Ibrahim . Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order ζ(1,2) in infinite dimensional Banach spaces. AIMS Mathematics, 2024, 9(4): 10386-10415. doi: 10.3934/math.2024508
    [6] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [7] Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady . Existence of solutions for [p,q]-difference initial value problems: application to the [p,q]-based model of vibrating eardrums. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108
    [8] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [9] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
    [10] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
  • Constructing permutation polynomials is a hot topic in finite fields. Recently, huge kinds of permutation polynomials over Fq2 have been studied. In this paper, by using AGW criterion and piecewise method, we construct several classes of permutation polynomials over Fq3 of the forms similar to (xq2+xq+x+δ)q31d+1+L(x), for d=2,3,4,6, where L(x) is a linearized polynomial over Fq.



    Let A denote the class of functions f which are analytic in the open unit disk D={ζ:|ζ|<1} of the form

    f(ζ)=ζ+a2ζ2+a3ζ3+(ζD) (1.1)

    and let S denote the subclass of A consisting of univalent functions.

    Assume that f and g are two analytic functions in D. Then, we say that the function g is subordinate to the function f, and we write

    g(ζ)f(ζ)(ζD),

    if there exists a Schwarz function ω(ζ) with ω(0)=0 and |ω(ζ)|<1, such that (see [1])

    g(ζ)=f(ω(ζ))(ζD).

    The familiar coefficient conjecture for the functions fS having the series form (1.1), was given by Bieberbach in 1916 and it was later proved by de-Branges [2] in 1985. It was one of the most celebrated conjectures in classical analysis, one that has stood as a challenge to mathematician for a very long time. During this period, many mathematicians worked hard to prove this conjecture and as result they established coefficient bounds for some sub-families of the class S of univalent functions. Ma and Minda (see [3]) introduced two classes of analytic functions namely;

    S(ψ)={fA:ζf(ζ)f(ζ)ψ(ζ)(ζD)}

    and

    C(ψ)={fA:1+ζf(ζ)f(ζ)ψ(ζ)(ζD)},

    where the function ψ is an analytic univalent function such that (ψ)>0inD with ψ(0)=1,ψ(0)>0 and ψ maps D onto a region starlike with respect to 1 and symmetric with respect to the real axis and the symbol '' denote the subordination between two analytic functions. By varying the function ψ, several familiar classes can be obtained as illustrated below:

    (1) For ψ=1+Aζ1+Bζ(1B<A1), we get the class S(A,B), see [4].

    (2) For different values of A and B, the class S(α)=S(12α,1) is shown in [5].

    (3) For ψ=1+2π2(log1+ζ1ζ)2, the class was defined and studied in [6].

    (4) For ψ=1+ζ, the class is denoted by SL, details can be seen in [7] and further studied in [8].

    (5) For ψ=ζ+1+ζ2, the class is denoted by Sl, see [9].

    (6) If ψ=1+43ζ+23ζ2, then such class denoted by SC  was introduced in [10] and further studied by [11].

    (7) For ψ=eζ, the class Se was defined and studied in [12,13].

    (8) For ψ=cosh(ζ), the class is denoted by Scosh, see [14].

    (9) For ψ=1+sin(ζ), the class is denoted by Ssin, see [15] for details and further investigation, see [16].

    Recently in [17,18,19,20,21,22] by choosing some particular function for ψ as above, inequalities related with coefficient bounds of some sub-classes of univalent functions have been discussed extensively.

    The Fekete-Szegö inequality is one of the inequalities for the coefficients of univalent analytic functions found by Fekete and Szegö (1933), related to the Bieberbach conjecture. Another coefficient problem which is closely related with Fekete and Szegö is the Hankel determinant. Hankel determinants are very useful in the investigations of the singularities and power series with integral coefficients. For the functions fA of the form (1.1), in 1976, Noonan and Thomas [23] stated the th Hankel determinant as

    H(n)=|an       an+1    an+1an+1    an    an+2                         an+1  an+2   an|(a1=1,nN={1,2,.}).

    In particular, we have

    H2(1)=|a1    a2a2    a3|=a3a22(a1=1,n=1,=2)

    and

    H2(2)=|a2    a3a3    a4|=a2a4a23(n=2,=2).

    We note that H2(1) is the well-known Fekete-Szegö functional (see [24,25,26]).

    In recent years, many papers have been devoted to finding the upper bounds for the second-order Hankel determinant H2(2), for various sub-classes of analytic functions, it is worth mentioning that [13,19,27,28,29,30,31,32] (also see references cited therein) and the upper bounds for the third and forth-order Hankel determinants by many researchers (see [33,34,35,36,37,38]). Recently, Cho et al. [15] introduced the following function class Ss:

    Ss:={fA:ζf(ζ)f(ζ)1+sinζ(ζD)}, (1.2)

    which implies that the quantity ζf(ζ)f(ζ) lies in an eight-shaped region in the right-half plane. Inspired by the aforementioned works, in this paper, we mainly investigate upper bounds for the second-order Hankel determinant for the new function class RSsin associated with the sine function defined in Definition 1.

    Definition 1. Let 0ϑ1. Then the class RSsin(ϑ) consists of all analytic functions fA satisfying

    (f(ζ)ϑ(ζf(ζ)f(ζ))1ϑ1+sinζ=Φ(ζ).

    Note that,

    RSsin(0)=Ssin={fA:(ζf(ζ)f(ζ))1+sinζ}

    and

    RSsin(1)=Rsin={fA:f(ζ)1+sinζ}.

    To prove our main result, we need the following: Let P represent the family of functions h(ξ) that are regular with positive part in open unit disc D and of the form

    p(ζ)=1+n=1cnζn(ξD). (2.1)

    Lemma 1. [39] If p(ζ)P as given in (2.1), then

    cn2foralln1and|c2c212|2|c1|22.

    Lemma 2. [40] If p(ζ)P as given in (2.1), then

    |c2vc21|2max{1,|2v1|}

    and the result is sharp for the functions given by

    p(ζ)=1+ζ21ζ2,p(ζ)=1+ζ1ζ.

    Lemma 3. [41] If p(ζ)P as given in (2.1), then

    |c2vc21|{4v+2,ifv0,2,if 0v1,4v2,if v1.

    When v<0 or v>1, the equality holds if and only if p(ζ) is(1+ζ)/(1ζ) or one of its rotations. If 0<v<1, then equalityholds if and only if p(ζ) is (1+ζ2)/(1ζ2) or one of itsrotations. If v=0, the equality holds if and only if

    p(ζ)=(12+12λ)1+ζ1ζ+(1212λ)1ζ1+ζ(0λ1)

    or one of itsrotations. If v=1, the equality holds if and only if p isthe reciprocal of one of the functions such that the equalityholds in the case of v=0.

    Lemma 4. [40] If p(ζ)P, then there exist some x, ζ with |x|1, |ζ|1, such that

    2c2=c21+x(4c21),
    4c3=c31+2c1x(4c21)(4c21)c1x2+2(4c21)(1|x|2)ζ.

    In the first theorem, we will find the coefficient bounds for the function class RSsin(ϑ).

    Theorem 5. If the function f(ζ)RSsin(ϑ) and is of the form (1.1), then

    |a2|11+ϑ, (3.1)
    |a3|12+ϑmax{1,|ϑ2+ϑ22(1+ϑ)2|}, (3.2)

    and

    |a3μa22|12+ϑmax{1,|ϑ2+ϑ2+2μ(2+ϑ)2(1+ϑ)2|}, (3.3)

    where μC.

    Proof. Since f(ζ)RSsin(ϑ), according to subordination relationship, thus there exists a Schwarz function ω(ζ) with ω(0)=0 and |ω(ζ)|<1, satisfying

    [f(ζ)]ϑ(ζf(ζ)f(ζ))1ϑ=1+sin(ω(ζ)).

    Here

    [f(ζ)]ϑ(ζf(ζ)f(ζ))1ϑ=1+(1+ϑ)a2ζ+ζ22(2+ϑ)[2a3(1ϑ)a22]+(3+ϑ)ζ36[(1ϑ)(2ϑ)a326(1ϑ)a2a3+6a4]+. (3.4)

    Now, we define a function

    p(ζ)=1+ω(ζ)1ω(ζ)=1+c1ζ+c2ζ2+.

    It is known that p(ζ)P and

    ω(ζ)=p(ζ)11+p(ζ)=c12ζ+(c22c214)ζ2+(c32c1c22+c318)ζ3+. (3.5)

    On the other hand,

    1+sin(ω(ζ))=1+12c1ζ+(c22c214)ζ2+(5c3148+c3c1c22)ζ3+(c4c1c32+5c21c216c224c4132)ζ4+. (3.6)

    Comparing the coefficients of ζ, ζ2, ζ3 between the Eqs (3.4) and (3.6), we obtain

    a2=c12(1+ϑ), (3.7)
    12(2+ϑ)[2a3(1ϑ)a22]=c22c214, (3.8)
    (3+ϑ)6[(1ϑ)(2ϑ)a326(1ϑ)a2a3+6a4]=5c3148+c32c1c22. (3.9)

    Applying Lemma 1, we easily get

    |a2|11+ϑ,
    a3=12(2+ϑ)[c2c21(3ϑ2+5ϑ4(1+ϑ)2)],|a3|=12(2+ϑ)|c2c21(3ϑ2+5ϑ4(1+ϑ)2)|=12(2+ϑ)|c2νc21|,

    where ν=3ϑ2+5ϑ4(1+ϑ)2. Now by applying Lemma 2, we get

    |a3|12+ϑmax{1,|ϑ2+ϑ22(1+ϑ)2|}.

    From (3.7) and (3.10), we have

    a3μa22=12(2+ϑ)[c2c21(3ϑ2+5ϑ4(1+ϑ)2)c212μ(2+ϑ)4(1+ϑ)2]=12(2+ϑ)[c2c21(3ϑ2+5ϑ+2μ(2+ϑ)4(1+ϑ)2)]=12(2+ϑ){c2vc21}, (3.10)

    where

    v:=3ϑ2+5ϑ+2μ(2+ϑ)4(1+ϑ)2.

    Our result now follows by an application of Lemma 2 to get

    |a3μa22|12+ϑmax{1,|ϑ2+ϑ2+2μ(2+ϑ)2(1+ϑ)2|}. (3.11)

    Hence the proof is complete.

    Remark 1.

    By taking μ=1, we have |a3a22|12+ϑmax{1,|ϑ2+3ϑ+22(1+ϑ)2|}.

    If ϑ=0 and fSsin, then we get |a3a22|12 and if ϑ=1 and fRsin, we get |a3a22|13.

    Theorem 6. If the function fRSsin(ϑ) is given by (1.1), with μR, then

    |a3μa22|{12(2+ϑ)(ϑ2+ϑ2(1+ϑ)2+2μ(2+ϑ)(1+ϑ)2),ifμ<σ1,12+ϑ,ifσ1μσ2,12(2+ϑ)(ϑ2+ϑ2(1+ϑ)2+2μ(2+ϑ)(1+ϑ)2),ifμ>σ2,

    where

    σ1:=3ϑ25ϑ2(2+ϑ)andσ2:=ϑ2+3ϑ+42(2+ϑ).

    Proof. From (3.11), we have

    a3μa22=12(2+ϑ)[c2(3ϑ2+5ϑ4(1+ϑ)2+2μ(2+ϑ)4(1+ϑ)2)c21]=12(2+ϑ)(c2νc21),

    where

    ν:=3ϑ2+5ϑ+2μ(2+ϑ)4(1+ϑ)2. (3.12)

    The assertion of Theorem 6 now follows by an application of Lemma 3.

    Theorem 7. If the function fRSsin(ϑ) given by (1.1) and f1(w)=w+n=2dnwn is the analytic continuation to D of the inverse function of f with |w|<r0, where  r014 the radius of the Koebe domain, then for any complex number μ, we have

    |d2|11+ϑ, (4.1)
    |d3|1(2+ϑ)max{1,|ϑ2+5ϑ+62(1+ϑ)2|} (4.2)

    and

    d3μd22∣≤1(2+ϑ)max{1,|ϑ2+5ϑ+62(1+ϑ)2μ(2+ϑ)(1+ϑ)2|}. (4.3)

    Proof. If

    f1(w)=w+n=2dnwn (4.4)

    is the inverse function of f, it can be seen that

    f1(f(ζ))=f(f1(ζ))=ζ. (4.5)

    From Eq (4.5), we have

    f1(ζ+n=2anζn)=ζ. (4.6)

    Thus (4.5) and (4.6) yield

    ζ+(a2+d2)ζ2+(a3+2a2d2+d3)ζ3+=ζ, (4.7)

    hence by equating the corresponding coefficients of ζ, it can be seen that

    d2=a2, (4.8)
    d3=2a22a3. (4.9)

    From relations (3.7), (3.10), (4.8) and (4.9)

    d2=c12(1+ϑ), (4.10)
    d3=2c214(1+ϑ)212(2+ϑ)[c23ϑ2+5ϑ4(1+ϑ)2c21];=12(2+ϑ)[c2(3ϑ2+9ϑ+84(1+ϑ)2)c21]. (4.11)

    Taking modulus on both sides and by applying Lemma 2, we get (4.1) and (4.2). For any complex number μ, consider

    d3μd22=12(2+ϑ)[c2(3ϑ2+9ϑ+84(1+ϑ)2μ(2+ϑ)2(1+ϑ)2)c21]. (4.12)

    Taking modulus on both sides and by applying Lemma 2 on the right hand side of (4.12), one can obtain the result as in (4.3). Hence this completes the proof.

    A variable X is said to be Poisson distributed if it takes the values 0,1,2,3, with probabilities eκ, κeκ1!, κ2eκ2!, κ3eκ3!,... respectively, where κ is called the parameter. Thus

    P(X=τ)=κreκτ!,τ=0,1,2,3,.

    In [42], Porwal introduced a power series whose coefficients are probabilities of Poisson distribution

    I(κ,ζ)=ζ+n=2κn1(n1)!eκζn,ζD,

    where κ>0. We note that by the ratio test the radius of convergence of the above series is infinity. Due to the recent works in [42,43,44,45], let the linear operator

    Iκ(ζ):AA

    be given by

    Iκf(ζ)=I(κ,ζ)f(ζ)=ζ+n=2κn1(n1)!eκanζn=ζ+n=2Υn(κ)anζn,

    where Υn=Υn(κ)=κn1(n1)!eκ and denote the convolution or the Hadamard product of two series. In particular

    Υ2=κeκandΥ3=κ22eκ. (5.1)

    We define the class RSsin(ϑ,Υ) in the following way:

    RSsin(ϑ,Υ)={fA:IκfRSsin(ϑ)},

    where RSsin(ϑ) is given by Definition 1 and

    Iκf(ζ)=ζ+Υ2a2ζ2+Υ3a3ζ3+Υ4a4ζ4.

    Proceeding as in Theorems 5 and 6, we could obtain the coefficient estimates for functions of this class RSsin(ϑ,Υ) from the corresponding estimates for functions of the class RSsin(ϑ).

    Theorem 8. Let 0ϑ1 and Iκf(ζ)=ζ+Υ2a2ζ2+Υ3a3ζ3+. If fRSsin(ϑ,Υ), then for complex μ, we have

    |a3μa22|1(2+ϑ)Υ3max{1,|μ(2+ϑ)Υ3(1+ϑ)2Υ22+ϑ2+ϑ22(1+ϑ)2|}. (5.2)

    Proof. Since fRSsin(ϑ,Υ), for Iκf(ζ)=ζ+Υ2a2ζ2+Υ3a3ζ3+ we have

    [(Iκf(ζ))]ϑ(ζ(Iκf(ζ))Iκf(ζ))1ϑ=1+sin(ω(ζ)).

    By (3.4), we can easily get

    [(Iκf(ζ))]ϑ(ζ(Iκf(ζ))Iκf(ζ))1ϑ=1+(1+ϑ)Υ2a2ζ+(2+ϑ)[2Υ3a3(1ϑ)Υ22a22]ζ22+(3+ϑ)[(1ϑ)(2ϑ)Υ32a326(1ϑ)Υ2Υ3a2a3+6Υ4a4]ζ36+. (5.3)

    Thus by (5.3) and (3.6) we have

    1+(1+ϑ)Υ2a2ζ+(2+ϑ)[2Υ3a3(1ϑ)Υ22a22]ζ22+(3+ϑ)[(1ϑ)(2ϑ)Υ32a326(1ϑ)Υ2Υ3a2a3+6Υ4a4]ζ36+=1+12c1ζ+(c22c214)ζ2+(5c3148+c3c1c22)ζ3+(c4c1c32+5c21c216c224c4132)ζ4+.

    Now by equating corresponding coefficients of ζ,ζ2 and proceeding as in Theorem 5,

    a2=c12(1+ϑ)Υ2, (5.4)
    a3=12(2+ϑ)Υ3[c2c21(3ϑ2+5ϑ4(1+ϑ)2)]. (5.5)

    From (5.4) and (5.5), we get

    a3μa22=12(2+ϑ)Υ3[c2c21(3ϑ2+5ϑ4(1+ϑ)2)c212μ(2+ϑ)Υ34(1+ϑ)2Υ22]=12(2+ϑ)[c2c21(3ϑ2+5ϑ4(1+ϑ)2+2μ(2+ϑ)Υ34(1+ϑ)2Υ22)]. (5.6)

    Now by an application of Lemma 2 we get the desired result.

    Theorem 9. Let 0ϑ1 and Iκf(ζ)=ζ+Υ2a2ζ2+Υ3a3ζ3+, with μR, then

    |a3μa22|{12(2+ϑ)Υ3(ϑ2+ϑ2(1+ϑ)2+2μ(2+ϑ)Υ3(1+ϑ)2Υ22),ifμ<σ1,1(2+ϑ)Υ3,ifσ1μσ2,12(2+ϑ)Υ3(ϑ2+ϑ2(1+ϑ)2+2μ(2+ϑ)Υ3(1+ϑ)2Υ22),ifμ>σ2,

    where

    σ1:=(3ϑ2+5ϑ)2(2+ϑ)Υ22Υ3andσ2:=ϑ2+3ϑ+42(2+ϑ)Υ22Υ3.

    Specially, taking Υ2=κeκ and Υ3=κ22eκ, we easily state the above results related with Poisson distribution series.

    Using (5.6), and applying Lemma 3 we get desired result.

    Theorem 10. If the function fRSsin(ϑ) and is given by (1.1), then

    |a2a4a23|1(2+ϑ)2.

    Proof. Using the Eqs (3.7) and (3.10) in (3.9) it follows that

    a4=12(3+ϑ)[c3+((1ϑ)(3+ϑ)2(1+ϑ)(2+ϑ)1)c1c2+(524(1ϑ)(2ϑ)(3+ϑ)24(1+ϑ)3(1ϑ)(3+ϑ)(3ϑ2+5ϑ)8(1+ϑ)2(2+ϑ))c13]. (6.1)

    By simple computation we get,

    a4=12(3+ϑ)[c3(3ϑ2+8ϑ+12(1+ϑ)(2+ϑ))c1c2+(13ϑ4+56ϑ3+55ϑ22ϑ224(1+ϑ)3(2+ϑ))c13]=12(3+ϑ)c3(3ϑ2+8ϑ+14(ϑ3+6ϑ2+11ϑ+6))c1c2+(13ϑ4+56ϑ3+55ϑ22ϑ248(1+ϑ)3(2+ϑ)(3+ϑ))c13.

    Thus we establish that the estimate of the second Hankel determinant,

    a2a4a23=116[{ϑ4+6ϑ3+5ϑ2+4ϑ+812(1+ϑ)3(2+ϑ)2(3+ϑ)}c14{4(1+ϑ)(2+ϑ)2(3+ϑ)}c12c24(2+ϑ)2c22+4(1+ϑ)(3+ϑ)c1c3]. (6.2)

    Since pP it follows that p(eiθz)P;(θR), hence we may assume without loss of generality that c:=c10. Substituting the values of c2 and c3 as in Lemma 4 in (6.2), we get

    |a2a4a23|=116|(ϑ2+2ϑ+512(1+ϑ)3(3+ϑ))c4{c2(1+ϑ)(3+ϑ)+(4c2)(2+ϑ)2}(4c2)x2+2(1+ϑ)(3+ϑ)c(4c2)(1|x|2)y|. (6.3)

    Replacing |x| by δ and by making use of the triangle inequality and the fact that |y|1 in the above expression, we get

    |a2a4a23|116[(ϑ2+2ϑ+512(1+ϑ)3(3+ϑ))c4+2c(1+ϑ)(3+ϑ)(4c2)+{c2(1+ϑ)(3+ϑ)2c(1+ϑ)(3+ϑ)+(4c2)(2+ϑ)2}(4c2)δ2]=F(c,δ). (6.4)

    We shall now maximize F(c,δ), for (c,δ)[0,2]×[0,1]. Differentiating F(c,δ), partially with respect to δ we get

    Fδ=18{c2(1+ϑ)(3+ϑ)2c(1+ϑ)(3+ϑ)+(4c2)(2+ϑ)2}(4c2)δ. (6.5)

    For 0δ1, and for any fixed c[0,2], we observe that Fδ>0. Thus F(c,δ) is an increasing function of δ, and for c[0,2], F(c,δ) has a maximum value at δ=1. So, we have

    max0δ1F(c,δ)=F(c,1)=G(c).

    On a simplification, we find that

    F(c,δ)=F(c,1)=G(c)=116[(ϑ2+2ϑ+512(1+ϑ)3(3+ϑ))c4+{c2(1+ϑ)(3+ϑ)+(4c2)(2+ϑ)2}(4c2)]. (6.6)

    Equivalently,

    F(c,δ)=F(c,1)=G(c)=116[(ϑ2+2ϑ+512(1+ϑ)3(3+ϑ))c4+c2(4c2)(1+ϑ)(3+ϑ)+(4c2)2(2+ϑ)2].

    Now we note that

    G(c)=116[4(ϑ2+2ϑ+512(1+ϑ)3(3+ϑ))c3+8c4c3(1+ϑ)(3+ϑ)+(4c316c)(2+ϑ)2].

    If G(c)=0, then the root is c=0. Also, we have

    G(c)=116[(ϑ2+2ϑ+5(1+ϑ)3(3+ϑ))c13+(812c2(1+ϑ)(3+ϑ)+12c2(2+ϑ)216(2+ϑ)2)]=116[(ϑ2+2ϑ+5(1+ϑ)3(3+ϑ))c1312(1(1+ϑ)(3+ϑ)(2+ϑ)2)c28(ϑ2+4ϑ+2)(1+ϑ)(3+ϑ)(2+ϑ)2]

    is negative for c=0, which means that the function G(c) can take the maximum value at c=0, also which is

    |a2a4a23|1(2+ϑ)2.

    Remark 2.

    When ϑ=1, then fRsin and we get

    |a2a4a23|19.

    Also by fixing ϑ=0, then fSsin and we get

    |a2a4a23|14.

    In the present paper, we mainly get upper bounds of the second-order Hankel determinant of new class of starlike functions connected with the sine function. Also, we can discuss the related research of the coefficient problem and Fekete-Szegö inequality. Further for this function class we state the application of Poisson distribution related to Fekete-Szegö inequality. By fixing ϑ=0 and ϑ=1 we can state the above results for fRsin and fSsin. For motivating further researches on the subject-matter of this, we have chosen to draw the attention of the interested readers toward a considerably large number of related recent publications (see, for example, [46,47,48,49,50,51]) and developments in the area of mathematical analysis, which are not as closely related to the subject-matter of this presentation as many of the other publications cited here. In conclusion, with an opinion mostly to encouraging and inspiring further researches on applications of the basic (or q) analysis and the basic (or q) calculus in geometric function theory of complex analysis along the lines (see[52]), considering our present investigation and based on recently-published works on the Fekete-Szegö and Hankel determinant problem (see, for details, [8,23,47,48,49,50,51,52,53], one can extend or generalize our results for fRSsin(ϑ) is left as an exercise to interested readers. In addition, we choose to reiterate an important observation, which was presented in the recently-published review-cum-expository review article by Srivastava ([52], p. 340, [54] pp. 1511–1512), who pointed out the fact that the results for the above-mentioned or new q analogues can easily (and possibly trivially) be translated into the corresponding results for the so-called (p;q) analogues (with 0<|q|<p1) by applying some obvious parametric and argument variations with the additional parameter p being redundant.

    The first-named author (Huo Tang) was partly supported by the Natural Science Foundation of the People's Republic of China under Grant 11561001, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14, the Natural Science Foundation of Inner Mongolia of the People's Republic of China under Grant 2018MS01026, and the Higher School Foundation of Inner Mongolia of the People's Republic of China under Grant NJZY20200, the Program for Key Laboratory Construction of Chifeng University (No.CFXYZD202004), the Research and Innovation Team of Complex Analysis and Nonlinear Dynamic Systems of Chifeng University (No.cfxykycxtd202005) and the Youth Science Foundation of Chifeng University (No.cfxyqn202133).

    The authors declare that they have no competing interests.



    [1] A. Akbary, D. Ghioca, Q. Wang, On constructing permutations of finite fields, Finite Fields Appl., 17 (2011), 51–67. https://doi.org/10.1016/j.ffa.2010.10.002 doi: 10.1016/j.ffa.2010.10.002
    [2] C. S. Ding, Q. Xiang, J. Yuan, P. Z. Yuan, Explicit classes of permutation polynomials of F33m, Sci. China Ser. A: Math., 52 (2009), 639–647. https://doi.org/10.1007/s11425-008-0142-8 doi: 10.1007/s11425-008-0142-8
    [3] X. D. Hou, Permutation polynomials over finite fields–A survey of recent advances, Finite Fields Appl., 32 (2015), 82–119. https://doi.org/10.1016/j.ffa.2014.10.001 doi: 10.1016/j.ffa.2014.10.001
    [4] T. Helleseth, V. Zinoviev, New Kloosterman sums identities over F2m for all m, Finite Fields Appl., 9 (2003), 187–193. https://doi.org/10.1016/S1071-5797(02)00028-X doi: 10.1016/S1071-5797(02)00028-X
    [5] K. Q. Li, L. J. Qu, Q. Wang, Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields, Cryptogr. Commun., 11 (2019), 279–298. https://doi.org/10.1007/s12095-018-0292-7 doi: 10.1007/s12095-018-0292-7
    [6] N. Li, T. Helleseth, X. H. Tang, Further results on a class of permutation polynomials over finite fields, Finite Fields Appl., 22 (2013), 16–23. https://doi.org/10.1016/j.ffa.2013.02.004 doi: 10.1016/j.ffa.2013.02.004
    [7] R. Lidl, H. Niederreiter, Finite fields, 2 Eds, Cambridge: Cambridge University Press, 1997.
    [8] Q. Liu, Y. J. Sun, W. G. Zhang, Some classes of permutation polynomials over finite fields with odd characteristic, AAECC, 29 (2018), 409–431. https://doi.org/10.1007/s00200-018-0350-6 doi: 10.1007/s00200-018-0350-6
    [9] G. L. Mullen, D. Panario, Handbook of finite fields, Chapman and Hall/CRC, 2013. https://doi.org/10.1201/b15006
    [10] G. L. Mullen, Q. Wang, Permutation polynomials in one variable, In: Handbook of finite fields, Chapman and Hall/CRC, 2013,215–229.
    [11] X. E. Qin, S. F. Hong, Constructing permutation polynomials over finite fields, Bull. Aust. Math. Soc., 89 (2014), 420–430. https://doi.org/10.1017/S0004972713000646 doi: 10.1017/S0004972713000646
    [12] X. E. Qin, G. Y. Qian, S. F. Hong, New results on permutation polynomials over finite fields, Int. J. Number Theory, 11 (2015), 437–449. https://doi.org/10.1142/S1793042115500220 doi: 10.1142/S1793042115500220
    [13] Z. R. Tu, X. Y. Zeng, Y. P. Jiang, Two classes of permutation polynomials having the form (x2m+x+δ)s+x, Finite Fields Appl., 31 (2015), 12–24. https://doi.org/10.1016/j.ffa.2014.09.005 doi: 10.1016/j.ffa.2014.09.005
    [14] Q. Wang, Polynomials over finite fields: An index approach, In: Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications, 2019,319–348. https://doi.org/10.1515/9783110642094-015
    [15] Y. P. Wang, W. G. Zhang, D. Bartoli, Q. Wang, Permutation polynomials and complete permutation polynomials over Fq3, 2018, arXiv: 1806.05712v1.
    [16] P. Z. Yuan, C. S. Ding, Permutation polynomials over finite fields from a powerful lemma, Finite Fields Appl., 17 (2011), 560–574. https://doi.org/10.1016/j.ffa.2011.04.001 doi: 10.1016/j.ffa.2011.04.001
    [17] P. Z. Yuan, C. S. Ding, Further results on permutation polynomials over finite fields, Finite Fields Appl., 27 (2014), 88–103. https://doi.org/10.1016/j.ffa.2014.01.006 doi: 10.1016/j.ffa.2014.01.006
    [18] P. Z. Yuan, C. S. Ding, Permutation polynomials of the form L(x)+S2ak+S2bk over Fq3k, Finite Fields Appl., 29 (2014), 106–117. https://doi.org/10.1016/j.ffa.2014.04.004 doi: 10.1016/j.ffa.2014.04.004
    [19] P. Z. Yuan, Y. B. Zheng, Permutation polynomials from piecewise functions, Finite Fields Appl., 35 (2015), 215–230. https://doi.org/10.1016/j.ffa.2015.05.001 doi: 10.1016/j.ffa.2015.05.001
    [20] Z. B. Zha, L. Hu, Z. Z. Zhang, New results on permutation polynomials of the form (xpmx+δ)s+xpm+x over Fp2m, Cryptogr. Commun., 10 (2018), 567–578. https://doi.org/10.1007/s12095-017-0234-9 doi: 10.1007/s12095-017-0234-9
    [21] D. B. Zheng, Z. Chen, More classes of permutation polynomial of the form (xpmx+δ)s+L(x), AAECC, 28 (2017), 215–223. https://doi.org/10.1007/s00200-016-0305-8 doi: 10.1007/s00200-016-0305-8
    [22] Y. B. Zheng, P. Z. Yuan, D. Y. Pei, Large classes of permutation polynomials over Fq2, Des. Codes Cryptogr., 81 (2016), 505–521. https://doi.org/10.1007/s10623-015-0172-5 doi: 10.1007/s10623-015-0172-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1632) PDF downloads(97) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog