AIMS Mathematics, 2017, 2(1): 128-160. doi: 10.3934/Math.2017.1.128.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

What is “geometric algebra”, and what has it been in historiography?1

Section for philosophy and Science Studies, Roskilde University, Denmark

Much ink has been spilled these last 50 years over the notion (or whatever it is) of “geometric algebra” – sometimes in disputes so hot that one would believe it to be blood. However, nobody has seemed too interested in analyzing whether others have used the words in the same way as he has himself (he, indeed – as a feminist might declare, “all males, of course”). So, let us analyze what concepts or notions have been referred to by the two words in combination – if any.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Ancient Greek mathematics; Babylonian mathematics; Geometric algebra; P. Tannery; H. G. Zeuthen; O. Neugebauer; Á. Szabó; M. Mahoney; S. Unguru: B. L. van der Waerden; H. Freuden thal

Citation: Jens Høyrup. What is “geometric algebra”, and what has it been in historiography?1. AIMS Mathematics, 2017, 2(1): 128-160. doi: 10.3934/Math.2017.1.128

References

  • 1. Berggren, J. L., 1984. History of Greek Mathematics: A Survey of Recent Research. Historia Mathematica 11, 394−410.
  • 2. Blåsjö, V., 2016. In Defence of Geometrical Algebra. Archive for History of Exact Sciences 70, 325−359.
  • 3. Boyer, C. B., 1968. A History of Mathematics. New York: Wiley.
  • 4. Cantor, M., 1880. Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten Zeiten bis zum Jahre 1200 n. Chr. Leipzig: Teubner.
  • 5. Cantor, M., 1894. Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten Zeiten bis zum Jahre 1200 n. Chr. Zweite Auflage. Leipzig: Teubner.
  • 6. Cantor, M., 1907. Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten Zeiten bis zum Jahre 1200 n. Chr. Dritte Auflage. Leipzig: Teubner.
  • 7. Chasles, M., 1870. Rapport sur les progrés de la géométrie. Paris: Imprimerie Nationale.
  • 8. Freudenthal, H., 1977. What Is Algebra and What Has It Been in History? Archive for History of Exact Sciences 16, 189−200.
  • 9. Fried, M. N., & S. Unguru, 2001. Apollonius of Perga's Conica. Text, Context, Subtext. Leiden etc.: Brill.
  • 10. Gandz, S., 1937. The Origin and Development of the Quadratic Equations in Babylonian, Greek, and Early Arabic Algebra. Osiris 3, 405−557.
  • 11. Hasse, H., & H. Scholz, 1928. Die Grundlagenkrise der griechischen Mathematik. Kant-Studien 33, 4−34.
  • 12. Heath, T. L. (ed., trans.), 1896. Apollonius of Perga, Treatise on Conic Sections. Edited in Modern Notation. Cambridge: The University Press.
  • 13. Heath, T. L. (ed., trans.), 1897. The Works of Archimedes edited in Modern Notation. Cambridge: Cambridge University Press.
  • 14. Heath, T. L., 1921. A History of Greek Mathematics. 2 vols. Oxford: The Clarendon Press.
  • 15. Heath, T. L. (ed., trans.), 1926. The Thirteen Books of Euclid's Elements. 2nd revised edition. 3 vols. Cambridge: Cambridge University Press New York: Macmillan.
  • 16. Heiberg, J. L. (ed., trans.), 1883. Euclidis Elementa. 5 vols. Leipzig: Teubner, 1883−1888.
  • 17. Hofmann, J. E., 1953. Geschichte der Mathematik. 3 Bände. Berlin: Walter de Gruyter, 1953, 1957.
  • 18. Høyrup, J., 1988. Jordanus de Nemore, 13th Century Mathematical Innovator: an Essay on Intellectual Context, Achievement, and Failure. Archive for History of Exact Sciences 38, 307−363.
  • 19. Høyrup, J., 1998. 'Oxford' and 'Gherardo da Cremona': on the Relation between Two Versions of al-Khwārizmī's Algebra, inActes du 3me Colloque Maghrébin sur l'Histoire des Mathématiques Arabes, Tipaza (Alger, Algérie), 1−3 Décembre 1990, vol. II. Alger: Association Algérienne d'Histoire des Mathématiques, pp. 159−178.
  • 20. Høyrup, J., 2001. On a Collection of Geometrical Riddles and Their Role in the Shaping of Four to Six 'Algebras'.Science in Context 14, 85−131.
  • 21. Høyrup, J., 2010. Old Babylonian 'Algebra', and What It Teaches Us about Possible Kinds of Mathematics. Contribution to the ICM Satellite Conference "Mathematics in Ancient Times", Kerala School of Mathematics, Kozhikode, 29 August − 1 September 2010. Preprint, 8 September 2010. (The published version had to be so strongly shortened that the relevant passage disappeared.)
  • 22. Høyrup, J., 2016. As the Outsider Walked In: The Historiography of Mesopotamian Mathematics Until Neugebauer, in Alexander Jones, Christine Proust & John M. Steele (eds), A Mathematician's Journey: Otto Neugebauer and Modern Transformations of Ancient Science. Cham etc.: Springer, pp. 165−195.
  • 23. Hughes, B., O.F.M., 1986. Gerard of Cremona's Translation of al-Khwārizmī's Al-Jabr: A Critical Edition. Mediaeval Studies 48, 211−263.
  • 24. Jones, A. (ed., trans.), 1986. Pappus of Alexandria, Book 7 of the Collection. 2 vols. New York etc.: Springer.
  • 25. Kline, M., 1972. Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press, 1972.
  • 26. Luckey, P., 1941. Tābit b. Qurra über den geometrischen Richtigkeitsnachweis der Auflösung der quadratischen Gleichungen. Sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-physische Klasse. Berichte 93, 93−114.
  • 27. Mahoney, M. S., 1971a. Babylonian Algebra: Form vs. Content. Studies in History and Philosophy of Science 1, 369−380.
  • 28. Mahoney, M. S., 1971b. Die Anfänge der algebraischen Denkweise im 17. Jahrhundert. Rete 1, 15−31.
  • 29. Nesselmann, G. H. F., 1842. Versuch einer kritischen Geschichte der Algebra. Nach den Quellen bearbeitet. Erster Theil, Die Algebra der Griechen. Berlin: G. Reimer.
  • 30. Netz, R., 2004. The Transformation of Mathematics in the Early Mediterranean World. Cambridge: Cambridge University Press.
  • 31. Neugebauer, O., 1932a. Studien zur Geschichte der antiken Algebra I. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 2 (1932−33), 1−27.
  • 32. Neugebauer, O., 1932b. Apollonius-Studien (Studien zur Geschichte der antiken Algebra II). Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 2 (1932−33), 215−254.
  • 33. Neugebauer, O., 1933. Über die Lösung kubischer Gleichungen in Babylonien. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse 1933, 316−321.
  • 34. Neugebauer, O., 1934. Vorlesungen über Geschichte der antiken mathematischen Wissenschaften. I: Vorgriechische Mathematik. Berlin: Julius Springer.
  • 35. Neugebauer, O., 1936. Zur geometrischen Algebra (Studien zur Geschichte der antiken Algebra III). Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 3 (1934−36), 245−259.
  • 36. Neugebauer, O., 1941. Exact Science in Antiquity, inStudies in Civilization. University of Pennsylvania Bicentennial Conference. Philadelphia: University of Pennsylvania Press, pp. 23−31.
  • 37. Neugebauer, O., 1963. Survival of Babylonian Methods in the Exact Sciences of Antiquity and Middle Ages. Proceedings of the American Philosophical Society 107, 528−535.
  • 38. Neugebauer, O., 1969. The Exact Sciences in Antiquity. Reprint of 2nd Edition. New York: Dover. (2nd. ed. 1957).
  • 39. Price, D. J. d. S., 1965. Networks of Scientific Papers. Science 149, 510−515.
  • 40. Rashed, R. (ed., trans.), 2007. Khwārizmī, Le Commencement de l'algèbre. Paris: Blanchard.
  • 41. Rashed, R. (ed., trans.), 2013. Abū Kāmil, Algèbre et analyse Diophantienne. Berlin & Boston: de Gruyter.
  • 42. Rowe, D. E., 2012. Otto Neugebauer and Richard Courant: On Exporting the Göttingen Approach to the History of Mathematics. The Mathematical Intelligencer 34:2, 29−37.
  • 43. Said, E. W., 1978. Orientalism. New York: Pantheon Books.
  • 44. Schneider, I., 2016. Archimedes: Ingenieur, Naturwissenschaftler und Mathematiker. Berlin etc.: Springer.
  • 45. Sidoli, N., 2013. Research on Ancient Greek Mathematical Sciences, 1998−2013, in N. Sidoli & G. Van Brummelen (eds), From Alexandria, Through Baghdad and Medieval Islamic Sciences in Honour of J. L. Berggren. Heidelberg etc.: Springer, pp. 25−50.
  • 46. Struik, D. J., 1948. A Concise History of Mathematics. 2 vols. New York: Dover.
  • 47. Struik, D. J., 1967. A Concise History of Mathematics. 3d Revised Edition. New York: Dover.
  • 48. Suter, H., 1892. Das Mathematiker-Verzeichniss im Fihrist des Ibn Abî Jakûb an-Nadîm. Zeitschrift für Mathematik und Physik 37, supplement, 1−87.
  • 49. Szabó, A., 1969. Anfänge der griechischen Mathematik. München & Wien: R. Oldenbourg / Budapest: Akadémiai Kiadó.
  • 50. Tannery, P., 1887. La géométrie grecque. Comment son histoire nous est parvenue et ce que nous en savons. Essai critique. Première partie, Histoire générale de la géométrie élémentaire. Paris: Gauthiers-Villars.
  • 51. Tannery, P., 1912. Mémoires scientifiques. I. Sciences exactes dans l'Antiquité, 1876-1884. Toulouse: Édouard Privat / Paris: Gauthier-Villars.
  • 52. Tannery, P., 1915. Mémoires scientifiques. III. Sciences exactes dans l'Antiquité, 1889[sic, for 1899]-1913. Toulouse: Édouard Privat / Paris: Gauthier-Villars.
  • 53. Thureau-Dangin, F., 1940. L'Origine de l'algèbre. Académie des Belles-Lettres. Comptes Rendus, 84e année, N. 4, 292−319.
  • 54. Unguru, S., 1975. On the Need to Rewrite the History of Greek Mathematics. Archive for History of Exact Sciences 15, 67−114.
  • 55. Unguru, S., 1979. History of Ancient Mathematics: Some Reflections on the State of the Art. Isis 70, 555−565.
  • 56. Unguru, S., & D. E. Rowe, 1981. Does the Quadratic Equation Have Greek Roots? A Study of 'Geometric Algebra', 'Application of Areas', and Related Problems. Libertas Mathematica 1 (1981), 1−49; 2 (1982), 1−62.
  • 57. van der Waerden, B. L., 1938. Die Entstehungsgeschichte der ägyptischen Bruchrechnung. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien 4, 359−382.
  • 58. van der Waerden, B. L., 1956. Erwachende Wissenschaft: Ägyptische, babylonische und griechische Mathematik. Basel & Stuttgart: Birkhäuser.
  • 59. van der Waerden, B. L., 1961. Science Awakening. 2nd Edition. New York: Oxford University Press.
  • 60. van der Waerden, B. L., 1976. Defence of a 'Shocking' Point of View. Archive for History of Exact Sciences 15, 199−210.
  • 61. Vitrac, B. (ed., trans.), 1990. Euclide d'Alexandrie, Les Éléments. Traduits du texte de Heiberg. 4 vols. Paris: Presses Universitaires de France, 1990-2001.
  • 62. Vogel, K., 1936. Beiträge zur griechischen Logistik. Erster Theil. Sitzungsberichte der mathematisch-naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München 1936, 357−472.
  • 63. Weil, A., 1978. Who Betrayed Euclid? Archive for History of Exact Sciences 19, 91−93.
  • 64. Woepcke, F. (ed., trans.), 1851. L'Algèbre d'Omar Alkhayyâmî, publiée, traduite et accompagnée d'extraits de manuscrits inédits. Paris: Benjamin Duprat.
  • 65. Zeuthen, H. G., 1886. Die Lehre von den Kegelschnitten im Altertum. København: Höst & Sohn.
  • 66. Zeuthen, H. G., 1896. Geschichte der Mathematik im Altertum und im Mittelalter. Vorlesungen. København: Høst & Søn.

 

Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, Jens Høyrup, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved