Loading [MathJax]/jax/output/SVG/jax.js
Research article

On the Diophantine equation 1x+1y+1z=13p

  • Received: 04 December 2016 Accepted: 06 January 2017 Published: 24 February 2017
  • In the present paper we obtained all positive integer solutions of some diophantine equations related to unit fraction.

    Citation: Xiaodan Yuan, Jiagui Luo. On the Diophantine equation 1x+1y+1z=13p[J]. AIMS Mathematics, 2017, 2(1): 111-127. doi: 10.3934/Math.2017.1.111

    Related Papers:

    [1] Wei Zhao, Jian Lu, Lin Wang . On the integral solutions of the Egyptian fraction equation ap=1x+1y+1z. AIMS Mathematics, 2021, 6(5): 4930-4937. doi: 10.3934/math.2021289
    [2] Jinyan He, Jiagui Luo, Shuanglin Fei . On the exponential Diophantine equation (a(al)m2+1)x+(alm21)y=(am)z. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401
    [3] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [4] Cheng Feng, Jiagui Luo . On the exponential Diophantine equation (q2lp2k2n)x+(pkqln)y=(q2l+p2k2n)z. AIMS Mathematics, 2022, 7(5): 8609-8621. doi: 10.3934/math.2022481
    [5] Jing Huang, Ao Han, Huafeng Liu . On a Diophantine equation with prime variables. AIMS Mathematics, 2021, 6(9): 9602-9618. doi: 10.3934/math.2021559
    [6] Jing Huang, Qian Wang, Rui Zhang . On a binary Diophantine inequality involving prime numbers. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407
    [7] Changsheng Luo, Jiagui Luo . Complete solutions of the simultaneous Pell equations (a2+1)y2x2=y2bz2=1. AIMS Mathematics, 2021, 6(9): 9919-9938. doi: 10.3934/math.2021577
    [8] Xiao Jiang, Shaofang Hong . On the denseness of certain reciprocal power sums. AIMS Mathematics, 2019, 4(3): 412-419. doi: 10.3934/math.2019.3.412
    [9] Liuying Wu . On a Diophantine equation involving fractional powers with primes of special types. AIMS Mathematics, 2024, 9(6): 16486-16505. doi: 10.3934/math.2024799
    [10] Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96
  • In the present paper we obtained all positive integer solutions of some diophantine equations related to unit fraction.


    1. Introduction

    In 1950, Erdös [1] conjectured for any positive integer n>1, that the following diophantine equation

    1x+1y+1z=4n (1.1)

    has positive integer solutions x, y, z. Later, Strauss [1] made a more powerful conjecture: let n>2, then diophantine equation (1.1) has positive integer solution x,y,z with xy,xz,yz. He proved that the conjecture is true with n5000. In 1964, Zhao Ke, Qi Sun and Xianjue Zhang [3] proved that Strauss conjecture is equivalent to Erdös conjecture. In 1979, Ke and Sun [4] proved that Erdös-Strauss conjecture is true with n4105. In 1965, Yamamoto [10] proved that Erdös-Strauss conjecture is also true with n107. In 1978, Franceschine [2] proved that Erdös-Strauss conjecture is true with n108. Sierpiski made a similar conjecture: for any positive integer n1, that the following diophantine equation

    1x+1y+1z=5n (1.2)

    has the solutions x,y,z of positive integer. Palama [6,7] proved that Sierpiski conjecture is true with n922321.Stewart [9] also obtained above the result with n105743881 and n1(mod278460). In 1984, Liu [5] obtained all the solution of positive integers of the following diophantine equation

    1x+1y+1z=5121. (1.3)

    Write n=12p in (1.1) or write n=15p in (1.2), where p is an odd prime. We obtain diophantine equation

    1x+1y+1z=13p,xyz. (1.4)

    One can easily get all the solutions of positive integer of (1.4) when p|x. If 3|x,px, then one lets

    x=3ax1,y=ay1,z=az1,a=gcd(x/3,y,z),

    and so (1.4) is changed to

    3p(y1+z1)x1=(ax1p)y1z1. (1.5)

    Moreover, we write y1=dy2,z1=dz2,d=gcd(y1,z1). It is easy to see that gcd(d,x1)=1.

    If 3p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1=y2z2. Write d3p=d1, then (1.5) is changed to

    y2+z2d1=ay2z2p,gcd(y2,z2)=1,y2z2.

    If 3d,p|d and 3|y1, then we get that x1|y3z2 and y3z2|x1 where y2=3y3. It follows that x1=y3z2. Write dp=d1, then (1.5) is changed to

    3y3+z2d1=ay3z2p,gcd(3y3,z2)=1,3y3z2.

    If 3d,p|d and 3|z1, then we get that x1|y2z3 and y2z3|x1 where z2=3z3. It follows that x1=y2z3. Write dp=d1, then (1.5) is changed to

    y2+3z3d1=ay2z3p,gcd(y2,3z3)=1.

    If pd,3|d and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2=py3. It follows that x1=y3z2. Write d3=d1, then (1.5) is changed to

    py3+z2d1=ay3z2p,gcd(py3,z2)=1,py3z2.

    If pd,3|d and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2=pz3. It follows that x1=y2z3. Write d3=d1, then (1.5) is changed to

    y2+pz3d1=ay2z3p,gcd(y2,pz3)=1.

    If 3pd and 3|y1,p|z1, then we get that x1|y3z3 and y3z3|x1 where y2=3y3,z2=pz3. It follows that x1=y3z3. Then (1.5) is changed to

    3y3+pz3d=ay3z3p,gcd(3y3,pz3)=1.

    If 3pd and p|y1,3|z1, then we get that x1|y3z3 and y3z3|x1 where y2=py3,z2=3z3. It follows that x1=y3z3. Then (1.5) is changed to

    py3+3z3d=ay3z3p,gcd(py3,3z3)=1.

    If 3y1z1,pd and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2=py3. It follows that x1=y3z2. Then (1.5) is changed to

    py3+z2d=ay3z2p3,gcd(py3,z2)=1.

    If 3y1z1,pd and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2=pz3. It follows that x1=y2z3. Then (1.5) is changed to

    y2+pz3d=ay2z3p3,gcd(y2,pz3)=1.

    If 3y1z1,p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1=y2z2. Write dp=d1, then (1.5) is changed to

    y2+z2d1=ay2z2p3,gcd(y2,z2)=1.

    Thus we have proved that solving the equation (1.5) is equivalent to solving the following diophantine equations:

    y+zd=ayzp,gcd(y,z)=1,yz, (1.6)
    3y+zd=ayzp,gcd(3y,z)=1, (1.7)
    py+zd=ayzp,gcd(py,z)=1, (1.8)
    3y+pzd=ayzp,gcd(3y,pz)=1, (1.9)
    py+zd=ayzp3,gcd(py,z)=1,3yz, (1.10)
    y+zd=ayzp3,gcd(y,z)=1,yz,3yz. (1.11)

    In this paper, we investigate the equations (1.6), (1.7) and (1.8) with p=661. Actually, we get all the solutions of positive integer of them. That is, we have the following results:

    Theorem 1.1. If ayz66180, then all the solutions of positive integers of (1.6) are given by (a,d,y,z)=

    (1, 1, 2, 663), (1, 1, 3, 332), (1, 2, 1, 1323), (1, 2, 3, 265), (1, 3, 1, 992), (1, 3, 2, 397),

    (2, 1, 1, 662), (2, 1, 2, 221), (2, 1, 4, 95), (2, 2, 1, 441), (3, 1, 1, 331),

    (3, 1, 3, 83), (3, 3, 1, 248)(4, 2, 1, 189).

    Theorem 1.2. If ayz66190, then all the solutions of positive integers of (1.7) are given by (a,d,y,z)=

    (1, 1, 2, 667), (1, 1, 3, 335), (1, 1, 5, 169), (1, 1, 9, 86), (1, 1, 84, 11), (1, 1, 167, 7), (1, 1, 333, 5),

    (1, 1, 665, 4), (1, 2, 1, 1325), (1, 4, 2645, 1), (1, 5, 1, 827), (1, 5, 1653, 1), (1, 7, 1157, 1), (1, 11, 909, 1),

    (1, 19, 785, 1), (2, 1, 1, 664), (2, 1, 3, 134), (2, 1, 27, 14), (2, 1, 133, 4), (2, 1, 663, 2), (2, 2, 1323, 1),

    (2, 4, 529, 1), (3, 1, 1, 332), (3, 1, 221, 2), (3, 2, 1, 265), (3, 2, 441, 1), (4, 1, 662, 1), (5, 1, 1, 166),

    (5, 1, 331, 1), (5, 2, 189, 1), (6, 2, 147, 1), (8, 1, 51, 2), (10, 1, 39, 2), (12, 2, 63, 1).

    Theorem 1.3. Each of the following is true:

    1. If ayz66180, then all the solutions of positive integers of (1.6) are given by (a,d,y,z)=

    (1, 3, 5, 142), (1, 3, 17, 40), (1, 7, 6, 113), (1, 11, 18, 37), (1, 28, 17, 39), (1, 32, 13, 51),

    (1, 67, 2, 333), (1, 112, 3, 221), (1, 332, 1, 663), (1, 333, 2, 331), (1, 663, 1, 662), (2, 1, 5, 74),

    (2, 1, 11, 32), (2, 1, 14, 25), (2, 2, 11, 31), (2, 7, 1, 356), (2, 8, 5, 67), (2, 20, 1, 339), (2, 26, 1, 337),

    (2, 29, 4, 83), (2, 112, 1, 332), (2, 332, 1, 331), (3, 1, 11, 21), (3, 14, 13, 17), (3, 28, 1, 223),

    (3, 111, 1, 221), (4, 1, 6, 29), (4, 5, 1, 174), (4, 24, 1, 167), (5, 1, 4, 35), (5, 1, 6, 23), (5, 2, 1, 147),

    (5, 15, 1, 134), (6, 4, 1, 115), (6, 8, 3, 37), (7, 1, 2, 51), (7, 6, 5, 19), (7, 24, 1, 95), (8, 28, 1, 83),

    (9, 1, 2, 39), (9, 1, 4, 19), (9, 2, 3, 25), (9, 15, 1, 74), (11, 2, 1, 63), (11, 3, 1, 62), (13, 10, 3, 17),

    (13, 26, 1, 51), (14, 2, 1, 49), (15, 1, 5, 9), (17, 8, 3, 13), (17, 20, 1, 39), (19, 3, 5, 7), (19, 9, 1, 35),

    (20, 1, 2, 17), (21, 3, 1, 32), (23, 5, 1, 29), (24, 1, 4, 7), (25, 2, 1, 27), (26, 1, 2, 13), (28, 1, 3, 8),

    (29, 4, 1, 23), (32, 2, 1, 21), (35, 5, 1, 19), (39, 9, 1, 17), (51, 7, 1, 13), (74, 2, 1, 9), (83, 3, 1, 8),

    (95, 2, 1, 7), (111, 1, 2, 3), (221, 2, 1, 3), (331, 3, 1, 2), (332, 1, 1, 2), (662, 2, 1, 1), (663, 1, 1, 1).

    2. If ayz66190, then all the solutions of positive integers of (1.7) are given by (a,d,y,z)=

    (1, 9, 1, 744), (1, 29, 3, 223), (1, 31, 35, 19), (1, 37, 5, 133), (1, 67, 39, 17), (1, 73, 95, 7),

    (1, 83, 51, 13), (1, 101, 133, 5), (1, 115, 3, 221), (1, 127, 677, 1), (1, 167, 1, 665), (1, 333, 1, 663),

    (1, 337, 2, 331), (1, 665, 1, 662), (1, 995, 331, 2), (1, 995, 663, 1), (1, 1987, 662, 1), (2, 1, 13, 28),

    (2, 2, 3, 121), (2, 200, 333, 1), (2, 334, 1, 331), (2, 994, 331, 1), (3, 2, 4, 58), (3, 7, 2, 113),

    (3, 11, 6, 37), (3, 28, 13, 17), (3, 32, 17, 13), (3, 67, 111, 2), (3, 112, 1, 221), (3, 332, 221, 1),

    (4, 2, 9, 19), (5, 10, 7, 19), (5, 16, 19, 7), (5, 34, 1, 133), (5, 100, 133, 1), (6, 5, 16, 7), (6, 20, 113, 1),

    (8, 1, 18, 5), (8, 23, 84, 1), (9, 1, 1, 83), (9, 1, 7, 11), (12, 1, 2, 29), (12, 5, 58, 1), (13, 2, 1, 53),

    (13, 13, 3, 17), (15, 1, 2, 23), (15, 2, 49, 1), (17, 11, 3, 13), (17, 59, 39, 1), (18, 8, 1, 37), (26, 2, 27, 1),

    (27, 1, 13, 2), (27, 2, 1, 25), (33, 2, 21, 1), (34, 1, 5, 4), (37, 11, 18, 5), (39, 10, 1, 17), (39, 26, 17, 1),

    (45, 1, 3, 5), (51, 8, 1, 13), (51, 20, 13, 1), (75, 2, 9, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2),

    (133, 2, 1, 5), (167, 1, 1, 4), (221, 5, 3, 1), (222, 2, 3, 1), (331, 5, 1, 2), (331, 7, 2, 1), (333, 1, 1, 2),

    (334, 1, 2, 1), (662, 4, 1, 1), (663, 2, 1, 1), (665, 1, 1, 1).

    Theorem 1.4. All the solutions of positive integers of (1.8) with pyz are given by (a,d,y,z)=

    (1, 1, 2, 1983), (1, 2, 1, 1983), (1, 3, 1, 1322), (1, 3, 2, 661), (1, 331, 2, 333), (1, 662, 1, 663),

    (1, 1323, 1, 662), (1, 1653, 2, 331), (2, 1, 1, 1322), (2, 2, 1, 661), (2, 331, 1, 332), (2, 992, 1, 331).

    We organize this paper as follows. In Section 2, we present some lemmas which are needed in the proof of our main results. Consequently, in Sections 3 to 6, we give the proofs of Theorem 1.1 to 1.4 respectively.


    2. Some lemmas

    To prove the main theorems, we need the following lemmas.

    Lemma 2.1. Let 661+b=p, where p is an odd prime. If one of the following conditions is satisfied

    p1(modq),q=3,5or11orp3(mod7),orp23(mod29),orp5(mod41),

    then both equation (1.6) and equation (1.7) have no solution (a, d, y, z) of positive integers with ayz661=b.

    proof. We only prove the case p23(mod29). The proofs of other cases are similarly. By the assumption we have bp6610(mod29). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. It follows (y,z){(1,1),(1,p),(p,1)} and either

    y+z0(mod29) (2.1)

    or

    3y+z0(mod29). (2.2)

    One can easily to see neither (2.1) nor (2.2) is satisfied for any element (y,z){(1,1),(1,p),(p,1)}. This completes the proof of Lemma 2.1}.

    Lemma 2.2. Let 661+b=pq, where p,q are prime numbers.

    (i)If one of the following conditions is satisfied

    pq1(mod3),orpq1(mod5),orp1(mod7),q3(mod7),orp3(mod13),q5(mod13),orp3(mod17),q5(mod17),orp3(mod19),q5(mod19),orp3(mod20),q7(mod20),orp7(mod23),q9(mod23),orp3(mod31),q7(mod31),orp2(mod37),q14(mod37),orp23(mod52),q31(mod52),orp3(mod56),q15(mod56),orp2(mod57),q17(mod57),orpq2(mod73),orp2(mod85),q33(mod85),orp7(mod88),q19(mod88),

    then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz661=b.

    (ii). If one of the following conditions is satisfied

    pq1(mod4),orpq±2(mod9),orp2(mod11),q6(mod11),

    then equation (1.6) has no positive integer solution (a, d, y, z) with ayz661=b.

    proof. (i) We only prove the case p7(mod23),q9(mod23).The proofs of other cases are similarly. By the assumption we have bpq6610(mod23). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. It follows (y,z){(1,puqv),(p,qv),(q,pu),(pq,1),u,v=0,1} and either

    y+z0(mod23) (2.3)

    or

    3y+z0(mod23). (2.4)

    One can easily to see neither (2.3) nor (2.4) is satisfied for any element (y,z){(1,puqv),(p,qv),(q,pu),(pq,1),u,v=0,1}. This completes the proof of part (i) of Lemma 2.2.

    The proof of part (ii) is similar.

    Lemma 2.3. Let 661+b=pqr, where p,q,r are prime. If one of the following conditions is satisfied

    pq3(mod11),r5(mod11),orpq3(mod25),r4(mod25),orpq2(mod31),r18(mod31),orpq2(mod55),r14(mod55),orpq19(mod61),r2(mod61),orpq5(mod64),r29(mod64),orp3(mod80),q13(mod80),r19(mod80),

    then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz661=b.

    proof. We only prove the case pq19(mod61),r2(mod61). The proofs of other cases are similarly. By the assumption we have bpqr6610(mod61). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. It follows

    (y,z){(1,puqvrt),(p,qvrt),(q,purt),(r,puqv),(pq,rt),(pr,qv),(qr,pt),(pqr,1),u,v,t=0,1}

    and either

    y+z0(mod61) (2.5)

    or

    3y+z0(mod23). (2.6)

    One can easily to see neither (2.5) nor (2.6) is satisfied for any element (y,z){(1,puqvrt),(p,qvrt),(q,purt),(r,puqv),(pq,rt),(pr,qv),(qr,pt),(pqr,1),u,v,t=0,1}. This completes the proof of Lemma 2.3.

    Lemma 2.4. If 3|b, then equation (1.7) has no positive integer solution (a, d, y, z) with ayz661=b.

    proof. Assume (1.7) has a positive integer solution (a,d,y,z) with ayz661=b. Then we get b|3y+z. It implies that 3|z since 3|b, which contradicts with gcd(3,z)=1. This completes the proof of Lemma 2.4.

    Lemma 2.5. Let 661+b=2kp, where k is an integer more than 2 and p is an odd prime.

    If 1+2upv0(modb),p+2u0(modb), and 2t+pv0(modb), where v{0,1},0uk,1tk, then equation (1.6) has no positive integer solution (a, d, y, z) with ayz661=b.

    proof. Assume (1.6) has a positive integer solution (a,d,y,z) with ayz661=b. It follows

    (y,z){(1,2upv),(p,2u),(2t,pv),(2tp,1),0uk,v=0,1,1tk}

    and

    y+z0(modb), (2.7)

    which contradicts the assumption of Lemma 2.5.

    This completes the proof of Lemma 2.5.

    Lemma 2.6. Let (a,d,y,z) be a positive integer solution of equation (1.6) with ayz661=b. If b80,ad2, then y6.

    proof. We first prove that b1322. Otherwise b>1322, then we have zy+z213222=661.

    If ay2, then from ayz661=y+zd2z, we get z(ay2)z661 which contradicts with z661.

    If a=y=d=1, then we have 1=661 which is impossible.

    If a=y=1,d>1, then we have

    z=661d+1d1=661+662d1661+662=1323,

    which contradicts with z1322+661=1983.

    If a=1,y=2, then we have

    z=6612+6652(2d1)661+6652=663,

    which contradicts with z1322+661=1983.

    If a=2,y=1, then we have

    z=6612+6632(2d1)661+6632=662,

    which also contradicts with z1322+661=1983. Hence b1322 as desired.

    Assume now y6.

    If d2,b200, then y+z=db400. Since quadratic function

    f(y)=y(dby),0ydb2,

    is increasing function, so we have

    yz=f(y)f(6)=6(db6)6394=2364,

    which contradicts with ayz1983. If d2,80b200, then similarly we have

    yz=f(y)f(6)=6(db6)6154=924,

    which contradicts with ayz661+200=861.

    If d=1, then we have a2. It follows that yz[1983a][19832]=991. If b200, then similarly we have

    yz=f(y)f(6)=6(b6)6194=1164,

    which contradicts with yz991. If 80b200, then similarly we have

    yz=f(y)f(6)=6(b6)674=444,

    which contradicts with yz[861a][8612]=430.

    This completes the proof of Lemma 2.6.

    Lemma 2.7. Let (a, d, y, z) be a positive integer solution of equation (1.7) with ayz661=b. If 80b2644, and a5 or d7, then we have either y6 or z6.

    proof. Since gcd(3y,z)=1, so we have either 3yz or 3y>z. We prove that y6 if 3yz and z6 if 3y>z.

    We prove that z6 if 3yz. Otherwise z6.

    Case 1: d7. Then 3y+z=db, we get z(ay2)z661 which contradicts with z661.

    If b300, then y+z=db2100. Since quadratic function

    g(z)=z(dbz),0zdb2,

    is increasing function, so we have

    yz=g(z)3g(6)322094=4188,

    which contradicts with ayz3305.

    If 90b300, then similarly we have

    yz=g(z)3g(6)32624=1248,

    which contradicts with ayz661+300=961.

    Case 2: a5, then we have yz[3305a][33055]=661.

    If b400, then similarly we have

    yz=g(z)3g(6)32394=788,

    which contradicts with yz661.

    If 150b400, then similarly we have

    yz=g(z)3g(6)32144=288,

    which contradicts with yz[1061a][10615]=212.

    If 90b150, then similarly we have

    yz=g(z)3g(6)3284=168,

    which contradicts with yz[811a][8115]=162.

    Similarly we can prove that y6 if 3yz.

    This completes the proof of Lemma 2.7.


    3. Proof of Theorem 1.1

    Assume that (a,d,y,z) is a positive integer solution of equation (1.6) with ayz661=b80. Then we have y5 by Lemma :2.6. We divide the proof into four cases.

    Case 1: d=1. From equation (1.6), we get

    (ay1)z=661+y. (3.1)

    Replacing y by 1,2,3,4,5 in (3.1) respectively, we obtain

    (a1)z=2331,(2a1)z=31317,(3a1)z=883,(4a1)z=5719,(5a1)z=2937.

    Thus we get

    (a,y,z)=(2,1,662),(3,1,331),(2,2,221),(3,3,83),(2,4,95).

    Case 2: d=2. From equation (1.6), we get

    (2ay1)z=1322+y. (3.2)

    Replacing y by 1,2,3,4,5 in (3.2) respectively, we obtain

    (2a1)z=949,(4a1)z=4331,(6a1)z=2553,(8a1)z=61317,(10a1)z=1327.

    Thus we get

    (a,y,z)=(1,1,1323),(2,1,441),(4,1,189),(1,3,265).a

    Case 3: d=3. From equation (1.6), we get

    (3ay1)z=1983+y. (3.3)

    Replacing y by 1,2,3,4,5 in (3.3) respectively, we obtain

    (3a1)z=4331,(6a1)z=5397,(9a1)z=6331,(12a1)z=1987,(15a1)z=4771.

    Thus we get

    (a,y,z)=(1,1,992),(3,1,248),(1,2,397).

    Case 4: d4. If b100, then by the proof of Lemma 2.6 we know

    yz=f(y)f(6)6394=2364,

    which contradicts with ayz1983. If 80b100, then similarly we know

    yz=f(y)f(6)6314=1884,

    which contradicts with ayz761.

    So Theorem 1.1 is proved.


    4. Proof of Theorem 1.2

    Assume that (a,d,y,z) is a positive integer solution of equation (1.7) with ayz661=b90. We divide the proof into three cases.

    Case 1: b2644, assume that yz. Then y>3y+z4=b4>661. If az4, then from (1.7), we get ayz661=3y+zd4y. It implies that y(az4)y661, which contradicts with y661. Hence az4. On the other hand, we have (adz3)b=az2+198316+1983=1999 which contradicts with b>2644. Similarly we can prove that yz is impossible.

    Case 2: 90b2644,d7 and a5, then we have a{1,2,3,4},d{1,2,4,5} since d|3y+z,gcd(3y,z)=1.

    If a=1, from equation (1.7), we get

    (dy1)(dz3)=661d2+3. (4.1)

    Replacing d by 1,2,4,5 in (4.1) respectively, we obtain

    (y1)(z3)=883,(2y1)(2z3)=2647,(4y1)(4z3)=71149,(5y1)(5z3)=161033.

    Thus we get

    (d,y,z)=(1,2,667),(1,3,335),(1,5,169),(1,9,86),(1,84,11),(1,167,7),(1,333,5),
    (1,665,4),(2,1,1325),(2,1324,2),(4,2645,1),(5,1,827),(5,1653,1).

    If a=2, from equation (1.7), we get

    (2dy1)(2dz3)=1322d2+3. (4.2)

    Replacing d by 1,2,4,5 in (4.2) respectively, we obtain

    (2y1)(2z3)=2553,(4y1)(4z3)=111317,(8y1)(8z3)=54231,(5y1)(5z3)=33053.

    Thus we get

    (d,y,z)=(1,1,664),(1,3,134),(1,27,14),(1,133,4),(1,663,2),(2,1323,1),(4,529,1).

    If a=3, from equation (1.7), we get

    (3dy1)(dz1)=661d2+1. (4.3)

    Replacing d by 1,2,4,5 in (4.3) respectively, we obtain

    (3y1)(z1)=2331,(6y1)(2z1)=5232,(9y1)(3z1)=252717,(15y1)(5z1)=28263.

    By computing we get that

    (d,y,z)=(1,1,332),(1,221,2),(2,1,265),(2,441,1).

    If a=4, we contend d3. Otherwise d4, we have 3y+z=db4b. If b300, then we have yz1197, which contradicts with yz[33054]=826. If 90b300, then we have yz357, which contradicts with yz[9614]=240. Hence d3 as desired. From equation (1.7), we get

    (4dy1)(4dz3)=2644d2+3. (4.4)

    Replacing d by 1,2 in (4.4) respectively, we obtain

    (4y1)(4z3)=2647,(8y1)(8z3)=71149.

    Thus we get

    (d,y,z)=(1,662,1).

    Case 3: 90b2644,d7 or a5. Then we have either y5 or z5 by Lemma 2.7.

    Subcase 1: d=1,a5, from equation (1.7), we get

    (ay1)z=661+3y (4.5)

    and

    (az3)y=661+z. (4.6)

    Replacing y by 1,2,3,4,5 in (4.5) respectively, we obtain

    (a1)z=883,(2a1)z=2329,(3a1)z=2567,(4a1)z=673,(5a1)z=4132.

    Thus we get

    (a,y,z)=(5,1,166).

    Replacing z by 1,2,4,5 in (4.6) respectively, we obtain

    (a3)y=2331,(2a3)y=31317,(4a3)y=5719,(5a3)y=23237.

    By computing we get

    (a,y,z)=(5,331,1),(8,51,2),(10,39,2).

    Subcase 2: d=2,a5, from equation (1.7), we get

    (2ay1)z=1322+y (4.7)

    and

    (2az3)y=1322+z. (4.8)

    Replacing y by 1,2,3,4,5 in (4.7) respectively, we obtain

    (2a1)z=5253,(4a1)z=2483,(6a1)z=113,(8a1)z=22329,(10a1)z=7191.

    By computing we know that the above equations have no positive integer solution (a,z) such that a5,b90.

    Replacing z by 1,2,4,5 in (4.8) respectively, we obtain

    (2a3)y=3372,(4a3)y=22331,(8a3)y=231317,(10a3)y=1327.

    By computing we get

    (a,y,z)=(6,147,1),(12,63,1),(5,189,1).

    Subcase 3: d4,a5, then we have 3y+z=db4b. If b200, then we get that yz797 which contradicts with yz[33055]=661. If 90b200, then we get that yz357 which contradicts with yz[8615]=172.

    Subcase 4: d7,a5. We contend that a=1. Otherwise a2. If b300, then we get that yz2097 which contradicts with yz[33052]=1652. If 90b300, then we get that yz627 which contradicts with yz[8612]=430. Thus a=1 as desired. From equation (1.7), we get

    (dy1)(yz661)=661+3y2 (4.9)

    and

    (dz3)(yz661)=1983+z2. (4.10)

    Replacing y by 1, 2, 3, 4, 5 in (4.9) respectively, we obtain

    (d1)(z661)=883,(2d1)(2z661)=673,(3d1)(3z661)=4243,(4d1)(4z661)=709,(5d1)(5z661)=2523.

    By computing we know that the above equations have no positive integer solution (a,z) such that d7,b90.

    Replacing z by 1,2,4,5 in (4.8) respectively, we obtain

    (d3)(y661)=2631,(2d3)(2y661)=1987,(4d3)(4y661)=1999,(5d3)(5y661)=8251.

    By computing we get that

    (d,y,z)=(7,1157,1),(11,909,1),(19,785,1).

    Therefore the proof of Theorem 1.2 is complete.


    5. Proof of Theorem 1.3

    Since

    661+12=6731(mod3),661+22=6831(mod11),661+30=6911(mod3),661+40=7011(mod5),661+48=7091(mod3),661+58=71923(mod29),661+66=7271(mod3),661+72=7331(mod3),661+78=7391(mod3),661+82=7435(mod41),

    so both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz661=b for b{12,22,30,40,48,58,66,72,78,82} by Lemma 2.1.

    Since

    661+10=671=1161,11611(mod5),661+20=681=3227,2277(mod20),661+26=687=3229,2295(mod13),661+28=689=1353,661+34=695=5139,1393(mod17),661+37=698=2347,34714(mod37),661+38=699=3233,2335(mod19),661+46=707=7101,1019(mod23),661+52=713=2331,661+56=717=3239,2391(mod7),661+57=718=2359,35917(mod57),661+60=721=7103,71031(mod3),661+62=723=3241,2417(mod31),661+70=731=1743,173(mod7),431(mod7),661+56=717=3239,23915(mod56),661+73=734=2367,3672(mod73),661+76=737=1167,661+85=746=2373,37333(mod85),661+88=749=7107,10719(mod88),

    so both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz661=b for b{10,20,26,28,34,37,38,46,52,56,57,60,62,70,73,76,85,88} by Lemma 2.2 (i).

    Since

    661+31=692=22173,17318(mod31),661+44=705=3547,473(mod11),661+50=711=3279,794(mod25),661+55=716=22179,17914(mod55),661+61=722=2192,661+64=725=5229,661+80=741=31319,

    so both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz661=b for b{31,44,50,55,61,64} by Lemma 2.3 (i).

    Since

    661+47=708=22359,661+59=720=24325,661+68=729=36,661+71=732=22361,661+77=738=23241,

    by computing we know both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz661=b for b{47,59,68,71,77}.

    Since 661+27=688=2443,27x, for any

    x{1+2α43β,43+2α,2t+43β},

    where α{0,1,2,3,4},β{0,1,},t{1,2,3,4}.661+75=736=2523,75x, for any

    x{1+2α23β,23+2α,2t+23β},

    where α{0,1,2,3,4,5},β{0,1,},t{1,2,3,4,5} so (1.6) has no positive integer solution (a,d,y,z) with ayz661=b for b{27,75} by Lemma 2.5.

    Since

    661+18=679=797,7972(mod9),661+24=685=5137,51371(mod4),661+33=694=2347,3476(mod11),661+36=697=1741,17411(mod4),661+42=703=1937,19371(mod3),661+45=706=2353,3532(mod9),

    so (1.6) has no positive integer solution (a,d,y,z) with ayz661=b for b{18,24,33,36,42,45} by Lemma 2.2 (ii).

    For any b=3t,1t29, (1.7) has no positive integer solution (a,d,y,z) with ayz661=b by Lemma 2.4.

    Since

    661+3=2383,661+6=23237,661+9=2567,661+15=22132,
    661+21=21131,661+39=22527,661+51=2389,

    so by computing we get that (a,d,y,z)=

    (2, 29, 4, 83), (2, 112, 1, 332), (8, 28, 1, 83), (83, 3, 1, 8), (332, 1, 1, 2), (23, 5, 1, 29),

    (29, 4, 1, 23), (2, 8, 5, 67), (5, 15, 1, 134), (26, 1, 2, 13), (2, 2, 11, 31), (11, 3, 1, 62),

    (2, 1, 14, 25), (5, 1, 4, 35), (2, 7, 1, 356),

    are positive integer solutions of (1.6).

    We are now in a position to discuss

    b{1,2,4,5,7,8,11,13,14,16,17,19,23,25,28,29,32,35,41,43,49,53,59,65,67,74,79}.

    Since

    661+1=2331,661+2=31317,661+4=5719,661+5=23237,661+7=22167,661+8=3223,661+11=2537,661+13=2337,661+14=3352661+16=677,661+17=23113,661+19=23517,661+23=223219,661+25=273,661+28=1353,661+29=23523,661+32=32711,661+35=23329,661+41=23313,661+43=2611,661+49=2571,661+53=23717,661+59=24532,661+65=23112,661+67=23713,661+74=3572,661+79=22537,

    so by computing we get that (a,d,y,z)=

    (662, 2, 1, 1), (1, 663, 1, 662), (1, 333, 2, 331), (2, 332, 1, 331), (331, 3, 1, 2), (663, 1, 1, 1),

    (1, 332, 1, 663), (1, 112, 3, 221), (1, 32, 13, 51), (1, 28, 17, 39), (3, 111, 1, 221), (3, 14, 13, 17),

    (13, 26, 1, 51), (13, 10, 3, 17), (17, 20, 1, 39), (17, 8, 3, 13), (39, 9, 1, 17), (51, 7, 1, 13),

    (221, 2, 1, 3), (7, 6, 5, 19), (19, 3, 5, 7), (7, 24, 1, 95), (19, 9, 1, 35), (35, 5, 1, 19),

    (95, 2, 1, 7), (1, 11, 18, 37), (1, 67, 2, 333), (9, 15, 1, 74), (74, 2, 1, 9), (6, 8, 3, 37),

    (111, 1, 2, 3), (4, 24, 1, 167), (3, 28, 1, 223), (32, 2, 1, 21), (24, 1, 4, 7), (28, 1, 3, 8),

    (21, 3, 1, 32), (2, 26, 1, 337), (15, 1, 5, 9), (9, 2, 3, 25), (25, 2, 1, 27), (1, 7, 6, 113),

    (2, 20, 1, 339), (1, 3, 17, 40), (20, 1, 2, 17), (9, 1, 4, 19), (14, 2, 1, 49), (5, 1, 6, 23),

    (6, 4, 1, 115), (11, 2, 1, 63), (3, 1, 11, 21), (4, 1, 6, 29), (4, 5, 1, 174), (9, 1, 2, 39),

    (2, 1, 11, 32), (1, 3, 5, 142), (7, 1, 2, 51), (5, 2, 1, 147), (2, 1, 5, 74)

    are the solutions of (1.6) and (a,d,y,z)=

    (662, 4, 1, 1), (1, 337, 2, 331), (1, 665, 1, 662), (1, 1987, 662, 1), (1, 995, 331, 2), (2, 334, 1, 331),

    (2, 994, 331, 1), (331, 5, 1, 2), (331, 7, 2, 1), (663, 2, 1, 1), (1, 333, 1, 663), (1, 995, 663, 1),

    (1, 115, 3, 221), (1, 83, 51, 13), (1, 67, 39, 17), (3, 112, 1, 221), (3, 332, 221, 1), (3, 28, 13, 17),

    (3, 32, 17, 13), (13, 13, 3, 17), (17, 59, 39, 1), (17, 11, 3, 13), (39, 10, 1, 17), (39, 26, 17, 1),

    (51, 8, 1, 13), (51, 20, 13, 1), (221, 5, 3, 1), (1, 167, 1, 665), (665, 1, 1, 1), (1, 37, 5, 133),

    (1, 101, 133, 5), (1, 31, 35, 19), (1, 73, 95, 7), (5, 34, 1, 133), (5, 10, 7, 19), (5, 16, 19, 7),

    (133, 2, 1, 5), (5, 100, 133, 1), (333, 1, 1, 2), (18, 8, 1, 37), (222, 2, 3, 1), (3, 11, 6, 37),

    (3, 67, 111, 2), (37, 11, 18, 5), (2, 200, 333, 1), (334, 1, 2, 1), (167, 1, 1, 4), (1, 29, 3, 223),

    (6, 5, 16, 7), (8, 23, 84, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2), (45, 1, 3, 5),

    (27, 2, 1, 25), (75, 2, 9, 1), (1, 127, 677, 1), (3, 7, 2, 113), (6, 20, 113, 1), (34, 1, 5, 4),

    (4, 2, 9, 19), (13, 2, 1, 53), (15, 1, 2, 23), (9, 1, 7, 11), (33, 2, 21, 1), (12, 1, 2, 29),

    (12, 5, 58, 1), (3, 2, 4, 58), (27, 1, 13, 2), (26, 2, 27, 1), (8, 1, 18, 5), (2, 2, 3, 121),

    (2, 1, 13, 28), (15, 2, 49, 1)

    are the solutions of (1.7).

    We are now in a position to discuss b{83,86,89}.

    Since 661+83=23331, 661+86=3283 so by computing we get that (a,d,y,z)=(1,9,1,744),(9,1,1,83) are solutions of (1.7).

    Since 661+89=2353, so by computing we get that (1.7) has no positive integer solution.

    This finishes the proof of Theorem 1.3.


    6. Proof of Theorem 1.4

    If ay2, then from ayz661=661y+zd2z, we get that z(ay2)z661 which contradicts with z661y. Hence a=y=1 or a=1,y=2 or a=2,y=1.

    a=y=1 implies that (d1)(z661)=2661. So

    (d,z)=(2,1983),(3,1322),(662,663),(1323,662).

    a=1,y=2 implies that (2d1)(2z661)=5661. So

    (d,z)=(1,1983),(3,661),(331,333),(1653,331).

    a=2,y=1 implies that (2d1)(2z661)=3661. So

    (d,z)=(1,1322),(2,661),(331,332),(992,331).

    This concludes the proof of Theorem 1.4.


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] Z. Cao, An intruduction to Diophantine equations, Haerbin Industril university Press, 400 (1989).
    [2] N. Franceschine, Egyptian fractions, Sonoma State Coll., 1978.
    [3] Z. Ke, Q. Sun, X. Zhang, On the Diophantine equatins 4n=1x+1y+1z, J. Sichuan University (in Chinese), 3 (1964), 23-37.
    [4] Z. Ke, Q. Sun, Some conjecture and problem in Number Theorey, Chinese Journal of Nature (in Chinese), 7 (1979), 411-413.
    [5] Y. Liu, On a problem of unit fraction, J. Sichuan University (in Chinese), 2 (1984), 113-114.
    [6] Palama, Sull’s equarione diofantea 4n=1x+1y+1z, Boll. Union Mat. Ital, 13 (1958), 65-72.
    [7] Palama, Sull’s equarione diofantea 4n=1x+1y+1z, Boll. Union Mat. Ital, 14 (1959), 82-94.
    [8] L. A. Rosati, Sull’s equarione diofantea 4b=1x1+1x2+1x3, Boll. Union Mat. Ital, 9 (1954), 59-63.
    [9] B.M.Stewart, Theory of numbers, Macmillan, New York, (1964), 198-207.
    [10] Yamamoto, On the Diophantine equatins 4n=1x+1y+1z, K. Men. Fac. Sci. Kyushu University, Ser.A., 19 (1965), 37-47.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5102) PDF downloads(1200) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog