Citation: Xiaodan Yuan, Jiagui Luo. On the Diophantine equation 1x+1y+1z=13p[J]. AIMS Mathematics, 2017, 2(1): 111-127. doi: 10.3934/Math.2017.1.111
[1] | Wei Zhao, Jian Lu, Lin Wang . On the integral solutions of the Egyptian fraction equation ap=1x+1y+1z. AIMS Mathematics, 2021, 6(5): 4930-4937. doi: 10.3934/math.2021289 |
[2] | Jinyan He, Jiagui Luo, Shuanglin Fei . On the exponential Diophantine equation (a(a−l)m2+1)x+(alm2−1)y=(am)z. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401 |
[3] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[4] | Cheng Feng, Jiagui Luo . On the exponential Diophantine equation (q2l−p2k2n)x+(pkqln)y=(q2l+p2k2n)z. AIMS Mathematics, 2022, 7(5): 8609-8621. doi: 10.3934/math.2022481 |
[5] | Jing Huang, Ao Han, Huafeng Liu . On a Diophantine equation with prime variables. AIMS Mathematics, 2021, 6(9): 9602-9618. doi: 10.3934/math.2021559 |
[6] | Jing Huang, Qian Wang, Rui Zhang . On a binary Diophantine inequality involving prime numbers. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407 |
[7] | Changsheng Luo, Jiagui Luo . Complete solutions of the simultaneous Pell equations (a2+1)y2−x2=y2−bz2=1. AIMS Mathematics, 2021, 6(9): 9919-9938. doi: 10.3934/math.2021577 |
[8] | Xiao Jiang, Shaofang Hong . On the denseness of certain reciprocal power sums. AIMS Mathematics, 2019, 4(3): 412-419. doi: 10.3934/math.2019.3.412 |
[9] | Liuying Wu . On a Diophantine equation involving fractional powers with primes of special types. AIMS Mathematics, 2024, 9(6): 16486-16505. doi: 10.3934/math.2024799 |
[10] | Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96 |
In 1950, Erdös [1] conjectured for any positive integer n>1, that the following diophantine equation
1x+1y+1z=4n | (1.1) |
has positive integer solutions x, y, z. Later, Strauss [1] made a more powerful conjecture: let n>2, then diophantine equation (1.1) has positive integer solution x,y,z with x≠y,x≠z,y≠z. He proved that the conjecture is true with n<5000. In 1964, Zhao Ke, Qi Sun and Xianjue Zhang [3] proved that Strauss conjecture is equivalent to Erdös conjecture. In 1979, Ke and Sun [4] proved that Erdös-Strauss conjecture is true with n<4⋅105. In 1965, Yamamoto [10] proved that Erdös-Strauss conjecture is also true with n<107. In 1978, Franceschine [2] proved that Erdös-Strauss conjecture is true with n<108. Sierpiski made a similar conjecture: for any positive integer n>1, that the following diophantine equation
1x+1y+1z=5n | (1.2) |
has the solutions x,y,z of positive integer. Palama [6,7] proved that Sierpiski conjecture is true with n<922321.Stewart [9] also obtained above the result with n≤105743881 and n≢1(mod278460). In 1984, Liu [5] obtained all the solution of positive integers of the following diophantine equation
1x+1y+1z=5121. | (1.3) |
Write n=12p in (1.1) or write n=15p in (1.2), where p is an odd prime. We obtain diophantine equation
1x+1y+1z=13p,x≤y≤z. | (1.4) |
One can easily get all the solutions of positive integer of (1.4) when p|x. If 3|x,p∤x, then one lets
x=3ax1,y=ay1,z=az1,a=gcd(x/3,y,z), |
and so (1.4) is changed to
3p(y1+z1)x1=(ax1−p)y1z1. | (1.5) |
Moreover, we write y1=dy2,z1=dz2,d=gcd(y1,z1). It is easy to see that gcd(d,x1)=1.
If 3p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1=y2z2. Write d3p=d1, then (1.5) is changed to
y2+z2d1=ay2z2−p,gcd(y2,z2)=1,y2≤z2. |
If 3∤d,p|d and 3|y1, then we get that x1|y3z2 and y3z2|x1 where y2=3y3. It follows that x1=y3z2. Write dp=d1, then (1.5) is changed to
3y3+z2d1=ay3z2−p,gcd(3y3,z2)=1,3y3≤z2. |
If 3∤d,p|d and 3|z1, then we get that x1|y2z3 and y2z3|x1 where z2=3z3. It follows that x1=y2z3. Write dp=d1, then (1.5) is changed to
y2+3z3d1=ay2z3−p,gcd(y2,3z3)=1. |
If p∤d,3|d and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2=py3. It follows that x1=y3z2. Write d3=d1, then (1.5) is changed to
py3+z2d1=ay3z2−p,gcd(py3,z2)=1,py3≤z2. |
If p∤d,3|d and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2=pz3. It follows that x1=y2z3. Write d3=d1, then (1.5) is changed to
y2+pz3d1=ay2z3−p,gcd(y2,pz3)=1. |
If 3p∤d and 3|y1,p|z1, then we get that x1|y3z3 and y3z3|x1 where y2=3y3,z2=pz3. It follows that x1=y3z3. Then (1.5) is changed to
3y3+pz3d=ay3z3−p,gcd(3y3,pz3)=1. |
If 3p∤d and p|y1,3|z1, then we get that x1|y3z3 and y3z3|x1 where y2=py3,z2=3z3. It follows that x1=y3z3. Then (1.5) is changed to
py3+3z3d=ay3z3−p,gcd(py3,3z3)=1. |
If 3∤y1z1,p∤d and p|y1, then we get that x1|y3z2 and y3z2|x1 where y2=py3. It follows that x1=y3z2. Then (1.5) is changed to
py3+z2d=ay3z2−p3,gcd(py3,z2)=1. |
If 3∤y1z1,p∤d and p|z1, then we get that x1|y2z3 and y2z3|x1 where z2=pz3. It follows that x1=y2z3. Then (1.5) is changed to
y2+pz3d=ay2z3−p3,gcd(y2,pz3)=1. |
If 3∤y1z1,p|d, then we get that x1|y2z2 and y2z2|x1. It follows that x1=y2z2. Write dp=d1, then (1.5) is changed to
y2+z2d1=ay2z2−p3,gcd(y2,z2)=1. |
Thus we have proved that solving the equation (1.5) is equivalent to solving the following diophantine equations:
y+zd=ayz−p,gcd(y,z)=1,y≤z, | (1.6) |
3y+zd=ayz−p,gcd(3y,z)=1, | (1.7) |
py+zd=ayz−p,gcd(py,z)=1, | (1.8) |
3y+pzd=ayz−p,gcd(3y,pz)=1, | (1.9) |
py+zd=ayz−p3,gcd(py,z)=1,3∤yz, | (1.10) |
y+zd=ayz−p3,gcd(y,z)=1,y≤z,3∤yz. | (1.11) |
In this paper, we investigate the equations (1.6), (1.7) and (1.8) with p=661. Actually, we get all the solutions of positive integer of them. That is, we have the following results:
Theorem 1.1. If ayz−661≥80, then all the solutions of positive integers of (1.6) are given by (a,d,y,z)=
(1, 1, 2, 663), (1, 1, 3, 332), (1, 2, 1, 1323), (1, 2, 3, 265), (1, 3, 1, 992), (1, 3, 2, 397),
(2, 1, 1, 662), (2, 1, 2, 221), (2, 1, 4, 95), (2, 2, 1, 441), (3, 1, 1, 331),
(3, 1, 3, 83), (3, 3, 1, 248)(4, 2, 1, 189).
Theorem 1.2. If ayz−661≥90, then all the solutions of positive integers of (1.7) are given by (a,d,y,z)=
(1, 1, 2, 667), (1, 1, 3, 335), (1, 1, 5, 169), (1, 1, 9, 86), (1, 1, 84, 11), (1, 1, 167, 7), (1, 1, 333, 5),
(1, 1, 665, 4), (1, 2, 1, 1325), (1, 4, 2645, 1), (1, 5, 1, 827), (1, 5, 1653, 1), (1, 7, 1157, 1), (1, 11, 909, 1),
(1, 19, 785, 1), (2, 1, 1, 664), (2, 1, 3, 134), (2, 1, 27, 14), (2, 1, 133, 4), (2, 1, 663, 2), (2, 2, 1323, 1),
(2, 4, 529, 1), (3, 1, 1, 332), (3, 1, 221, 2), (3, 2, 1, 265), (3, 2, 441, 1), (4, 1, 662, 1), (5, 1, 1, 166),
(5, 1, 331, 1), (5, 2, 189, 1), (6, 2, 147, 1), (8, 1, 51, 2), (10, 1, 39, 2), (12, 2, 63, 1).
Theorem 1.3. Each of the following is true:
1. If ayz−661<80, then all the solutions of positive integers of (1.6) are given by (a,d,y,z)=
(1, 3, 5, 142), (1, 3, 17, 40), (1, 7, 6, 113), (1, 11, 18, 37), (1, 28, 17, 39), (1, 32, 13, 51),
(1, 67, 2, 333), (1, 112, 3, 221), (1, 332, 1, 663), (1, 333, 2, 331), (1, 663, 1, 662), (2, 1, 5, 74),
(2, 1, 11, 32), (2, 1, 14, 25), (2, 2, 11, 31), (2, 7, 1, 356), (2, 8, 5, 67), (2, 20, 1, 339), (2, 26, 1, 337),
(2, 29, 4, 83), (2, 112, 1, 332), (2, 332, 1, 331), (3, 1, 11, 21), (3, 14, 13, 17), (3, 28, 1, 223),
(3, 111, 1, 221), (4, 1, 6, 29), (4, 5, 1, 174), (4, 24, 1, 167), (5, 1, 4, 35), (5, 1, 6, 23), (5, 2, 1, 147),
(5, 15, 1, 134), (6, 4, 1, 115), (6, 8, 3, 37), (7, 1, 2, 51), (7, 6, 5, 19), (7, 24, 1, 95), (8, 28, 1, 83),
(9, 1, 2, 39), (9, 1, 4, 19), (9, 2, 3, 25), (9, 15, 1, 74), (11, 2, 1, 63), (11, 3, 1, 62), (13, 10, 3, 17),
(13, 26, 1, 51), (14, 2, 1, 49), (15, 1, 5, 9), (17, 8, 3, 13), (17, 20, 1, 39), (19, 3, 5, 7), (19, 9, 1, 35),
(20, 1, 2, 17), (21, 3, 1, 32), (23, 5, 1, 29), (24, 1, 4, 7), (25, 2, 1, 27), (26, 1, 2, 13), (28, 1, 3, 8),
(29, 4, 1, 23), (32, 2, 1, 21), (35, 5, 1, 19), (39, 9, 1, 17), (51, 7, 1, 13), (74, 2, 1, 9), (83, 3, 1, 8),
(95, 2, 1, 7), (111, 1, 2, 3), (221, 2, 1, 3), (331, 3, 1, 2), (332, 1, 1, 2), (662, 2, 1, 1), (663, 1, 1, 1).
2. If ayz−661<90, then all the solutions of positive integers of (1.7) are given by (a,d,y,z)=
(1, 9, 1, 744), (1, 29, 3, 223), (1, 31, 35, 19), (1, 37, 5, 133), (1, 67, 39, 17), (1, 73, 95, 7),
(1, 83, 51, 13), (1, 101, 133, 5), (1, 115, 3, 221), (1, 127, 677, 1), (1, 167, 1, 665), (1, 333, 1, 663),
(1, 337, 2, 331), (1, 665, 1, 662), (1, 995, 331, 2), (1, 995, 663, 1), (1, 1987, 662, 1), (2, 1, 13, 28),
(2, 2, 3, 121), (2, 200, 333, 1), (2, 334, 1, 331), (2, 994, 331, 1), (3, 2, 4, 58), (3, 7, 2, 113),
(3, 11, 6, 37), (3, 28, 13, 17), (3, 32, 17, 13), (3, 67, 111, 2), (3, 112, 1, 221), (3, 332, 221, 1),
(4, 2, 9, 19), (5, 10, 7, 19), (5, 16, 19, 7), (5, 34, 1, 133), (5, 100, 133, 1), (6, 5, 16, 7), (6, 20, 113, 1),
(8, 1, 18, 5), (8, 23, 84, 1), (9, 1, 1, 83), (9, 1, 7, 11), (12, 1, 2, 29), (12, 5, 58, 1), (13, 2, 1, 53),
(13, 13, 3, 17), (15, 1, 2, 23), (15, 2, 49, 1), (17, 11, 3, 13), (17, 59, 39, 1), (18, 8, 1, 37), (26, 2, 27, 1),
(27, 1, 13, 2), (27, 2, 1, 25), (33, 2, 21, 1), (34, 1, 5, 4), (37, 11, 18, 5), (39, 10, 1, 17), (39, 26, 17, 1),
(45, 1, 3, 5), (51, 8, 1, 13), (51, 20, 13, 1), (75, 2, 9, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2),
(133, 2, 1, 5), (167, 1, 1, 4), (221, 5, 3, 1), (222, 2, 3, 1), (331, 5, 1, 2), (331, 7, 2, 1), (333, 1, 1, 2),
(334, 1, 2, 1), (662, 4, 1, 1), (663, 2, 1, 1), (665, 1, 1, 1).
Theorem 1.4. All the solutions of positive integers of (1.8) with py≤z are given by (a,d,y,z)=
(1, 1, 2, 1983), (1, 2, 1, 1983), (1, 3, 1, 1322), (1, 3, 2, 661), (1, 331, 2, 333), (1, 662, 1, 663),
(1, 1323, 1, 662), (1, 1653, 2, 331), (2, 1, 1, 1322), (2, 2, 1, 661), (2, 331, 1, 332), (2, 992, 1, 331).
We organize this paper as follows. In Section 2, we present some lemmas which are needed in the proof of our main results. Consequently, in Sections 3 to 6, we give the proofs of Theorem 1.1 to 1.4 respectively.
To prove the main theorems, we need the following lemmas.
Lemma 2.1. Let 661+b=p, where p is an odd prime. If one of the following conditions is satisfied
p≡1(modq),q=3,5or11orp≡3(mod7),orp≡23(mod29),orp≡5(mod41), |
then both equation (1.6) and equation (1.7) have no solution (a, d, y, z) of positive integers with ayz−661=b.
proof. We only prove the case p≡23(mod29). The proofs of other cases are similarly. By the assumption we have b≡p−661≡0(mod29). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz−661=b. It follows (y,z)∈{(1,1),(1,p),(p,1)} and either
y+z≡0(mod29) | (2.1) |
or
3y+z≡0(mod29). | (2.2) |
One can easily to see neither (2.1) nor (2.2) is satisfied for any element (y,z)∈{(1,1),(1,p),(p,1)}. This completes the proof of Lemma 2.1}.
Lemma 2.2. Let 661+b=pq, where p,q are prime numbers.
(i)If one of the following conditions is satisfied
p≡q≡1(mod3),orp≡q≡1(mod5),orp≡1(mod7),q≡3(mod7),orp≡3(mod13),q≡−5(mod13),orp≡3(mod17),q≡5(mod17),orp≡3(mod19),q≡5(mod19),orp≡3(mod20),q≡7(mod20),orp≡7(mod23),q≡9(mod23),orp≡3(mod31),q≡−7(mod31),orp≡2(mod37),q≡14(mod37),orp≡23(mod52),q≡31(mod52),orp≡3(mod56),q≡15(mod56),orp≡2(mod57),q≡17(mod57),orp≡q≡2(mod73),orp≡2(mod85),q≡33(mod85),orp≡7(mod88),q≡19(mod88), |
then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz−661=b.
(ii). If one of the following conditions is satisfied
p≡q≡1(mod4),orp≡q≡±2(mod9),orp≡2(mod11),q≡6(mod11), |
then equation (1.6) has no positive integer solution (a, d, y, z) with ayz−661=b.
proof. (i) We only prove the case p≡7(mod23),q≡9(mod23).The proofs of other cases are similarly. By the assumption we have b≡pq−661≡0(mod23). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz−661=b. It follows (y,z)∈{(1,puqv),(p,qv),(q,pu),(pq,1),u,v=0,1} and either
y+z≡0(mod23) | (2.3) |
or
3y+z≡0(mod23). | (2.4) |
One can easily to see neither (2.3) nor (2.4) is satisfied for any element (y,z)∈{(1,puqv),(p,qv),(q,pu),(pq,1),u,v=0,1}. This completes the proof of part (i) of Lemma 2.2.
The proof of part (ii) is similar.
Lemma 2.3. Let 661+b=pqr, where p,q,r are prime. If one of the following conditions is satisfied
p≡q≡3(mod11),r≡5(mod11),orp≡q≡3(mod25),r≡4(mod25),orp≡q≡2(mod31),r≡18(mod31),orp≡q≡2(mod55),r≡14(mod55),orp≡q≡19(mod61),r≡2(mod61),orp≡q≡5(mod64),r≡29(mod64),orp≡3(mod80),q≡13(mod80),r≡19(mod80), |
then both equation (1.6) and equation (1.7) have no positive integer solution (a, d, y, z) with ayz−661=b.
proof. We only prove the case p≡q≡19(mod61),r≡2(mod61). The proofs of other cases are similarly. By the assumption we have b≡pqr−661≡0(mod61). Assume either (1.6) or (1.7) has a positive integer solution (a,d,y,z) with ayz−661=b. It follows
(y,z)∈{(1,puqvrt),(p,qvrt),(q,purt),(r,puqv),(pq,rt),(pr,qv),(qr,pt),(pqr,1),u,v,t=0,1} |
and either
y+z≡0(mod61) | (2.5) |
or
3y+z≡0(mod23). | (2.6) |
One can easily to see neither (2.5) nor (2.6) is satisfied for any element (y,z)∈{(1,puqvrt),(p,qvrt),(q,purt),(r,puqv),(pq,rt),(pr,qv),(qr,pt),(pqr,1),u,v,t=0,1}. This completes the proof of Lemma 2.3.
Lemma 2.4. If 3|b, then equation (1.7) has no positive integer solution (a, d, y, z) with ayz−661=b.
proof. Assume (1.7) has a positive integer solution (a,d,y,z) with ayz−661=b. Then we get b|3y+z. It implies that 3|z since 3|b, which contradicts with gcd(3,z)=1. This completes the proof of Lemma 2.4.
Lemma 2.5. Let 661+b=2kp, where k is an integer more than 2 and p is an odd prime.
If 1+2upv≢0(modb),p+2u≢0(modb), and 2t+pv≢0(modb), where v∈{0,1},0≤u≤k,1≤t≤k, then equation (1.6) has no positive integer solution (a, d, y, z) with ayz−661=b.
proof. Assume (1.6) has a positive integer solution (a,d,y,z) with ayz−661=b. It follows
(y,z)∈{(1,2upv),(p,2u),(2t,pv),(2tp,1),0≤u≤k,v=0,1,1≤t≤k} |
and
y+z≡0(modb), | (2.7) |
which contradicts the assumption of Lemma 2.5.
This completes the proof of Lemma 2.5.
Lemma 2.6. Let (a,d,y,z) be a positive integer solution of equation (1.6) with ayz−661=b. If b≥80,ad≥2, then y<6.
proof. We first prove that b≤1322. Otherwise b>1322, then we have z>y+z2≥13222=661.
If ay>2, then from ayz−661=y+zd≤2z, we get z≤(ay−2)z≤661 which contradicts with z>661.
If a=y=d=1, then we have 1=−661 which is impossible.
If a=y=1,d>1, then we have
z=661d+1d−1=661+662d−1≤661+662=1323, |
which contradicts with z>1322+661=1983.
If a=1,y=2, then we have
z=6612+6652(2d−1)≤661+6652=663, |
which contradicts with z>1322+661=1983.
If a=2,y=1, then we have
z=6612+6632(2d−1)≤661+6632=662, |
which also contradicts with z>1322+661=1983. Hence b≤1322 as desired.
Assume now y≥6.
If d≥2,b≥200, then y+z=db≥400. Since quadratic function
f(y)=y(db−y),0<y≤db2, |
is increasing function, so we have
yz=f(y)≥f(6)=6⋅(db−6)≥6⋅394=2364, |
which contradicts with ayz≤1983. If d≥2,80≤b<200, then similarly we have
yz=f(y)≥f(6)=6⋅(db−6)≥6⋅154=924, |
which contradicts with ayz≤661+200=861.
If d=1, then we have a≥2. It follows that yz≤[1983a]≤[19832]=991. If b≥200, then similarly we have
yz=f(y)≥f(6)=6⋅(b−6)≥6⋅194=1164, |
which contradicts with yz≤991. If 80≤b<200, then similarly we have
yz=f(y)≥f(6)=6⋅(b−6)≥6⋅74=444, |
which contradicts with yz≤[861a]≤[8612]=430.
This completes the proof of Lemma 2.6.
Lemma 2.7. Let (a, d, y, z) be a positive integer solution of equation (1.7) with ayz−661=b. If 80≤b≤2644, and a≥5 or d≥7, then we have either y<6 or z<6.
proof. Since gcd(3y,z)=1, so we have either 3y<z or 3y>z. We prove that y<6 if 3y<z and z<6 if 3y>z.
We prove that z<6 if 3y>z. Otherwise z≤6.
Case 1: d≥7. Then 3y+z=db, we get z≤(ay−2)z≤661 which contradicts with z>661.
If b≥300, then y+z=db≥2100. Since quadratic function
g(z)=z(db−z),0z≤db2, |
is increasing function, so we have
yz=g(z)3≥g(6)3≥2⋅2094=4188, |
which contradicts with ayz≤3305.
If 90≤b<300, then similarly we have
yz=g(z)3≥g(6)3≥2⋅624=1248, |
which contradicts with ayz≤661+300=961.
Case 2: a≥5, then we have yz≤[3305a]≤[33055]=661.
If b≥400, then similarly we have
yz=g(z)3≥g(6)3≥2⋅394=788, |
which contradicts with yz≤661.
If 150≤b<400, then similarly we have
yz=g(z)3≥g(6)3≥2⋅144=288, |
which contradicts with yz≤[1061a]≤[10615]=212.
If 90≤b<150, then similarly we have
yz=g(z)3≥g(6)3≥2⋅84=168, |
which contradicts with yz≤[811a]≤[8115]=162.
Similarly we can prove that y<6 if 3y<z.
This completes the proof of Lemma 2.7.
Assume that (a,d,y,z) is a positive integer solution of equation (1.6) with ayz−661=b≥80. Then we have y≤5 by Lemma :2.6. We divide the proof into four cases.
Case 1: d=1. From equation (1.6), we get
(ay−1)z=661+y. | (3.1) |
Replacing y by 1,2,3,4,5 in (3.1) respectively, we obtain
(a−1)z=2⋅331,(2a−1)z=3⋅13⋅17,(3a−1)z=8⋅83,(4a−1)z=5⋅7⋅19,(5a−1)z=2⋅9⋅37. |
Thus we get
(a,y,z)=(2,1,662),(3,1,331),(2,2,221),(3,3,83),(2,4,95). |
Case 2: d=2. From equation (1.6), we get
(2ay−1)z=1322+y. | (3.2) |
Replacing y by 1,2,3,4,5 in (3.2) respectively, we obtain
(2a−1)z=9⋅49,(4a−1)z=4⋅331,(6a−1)z=25⋅53,(8a−1)z=6⋅13⋅17,(10a−1)z=1327. |
Thus we get
(a,y,z)=(1,1,1323),(2,1,441),(4,1,189),(1,3,265).a |
Case 3: d=3. From equation (1.6), we get
(3ay−1)z=1983+y. | (3.3) |
Replacing y by 1,2,3,4,5 in (3.3) respectively, we obtain
(3a−1)z=43⋅31,(6a−1)z=5⋅397,(9a−1)z=6⋅331,(12a−1)z=1987,(15a−1)z=4⋅7⋅71. |
Thus we get
(a,y,z)=(1,1,992),(3,1,248),(1,2,397). |
Case 4: d≥4. If b≥100, then by the proof of Lemma 2.6 we know
yz=f(y)≥f(6)≥6⋅394=2364, |
which contradicts with ayz≤1983. If 80≤b<100, then similarly we know
yz=f(y)≥f(6)≥6⋅314=1884, |
which contradicts with ayz≤761.
So Theorem 1.1 is proved.
Assume that (a,d,y,z) is a positive integer solution of equation (1.7) with ayz−661=b≥90. We divide the proof into three cases.
Case 1: b>2644, assume that y>z. Then y>3y+z4=b4>661. If az>4, then from (1.7), we get ayz−661=3y+zd<4y. It implies that y≤(az−4)y<661, which contradicts with y>661. Hence az≤4. On the other hand, we have (adz−3)b=az2+1983≤16+1983=1999 which contradicts with b>2644. Similarly we can prove that y≤z is impossible.
Case 2: 90≤b≤2644,d<7 and a<5, then we have a∈{1,2,3,4},d∈{1,2,4,5} since d|3y+z,gcd(3y,z)=1.
If a=1, from equation (1.7), we get
(dy−1)(dz−3)=661d2+3. | (4.1) |
Replacing d by 1,2,4,5 in (4.1) respectively, we obtain
(y−1)(z−3)=8⋅83,(2y−1)(2z−3)=2647,(4y−1)(4z−3)=71⋅149,(5y−1)(5z−3)=16⋅1033. |
Thus we get
(d,y,z)=(1,2,667),(1,3,335),(1,5,169),(1,9,86),(1,84,11),(1,167,7),(1,333,5), |
(1,665,4),(2,1,1325),(2,1324,2),(4,2645,1),(5,1,827),(5,1653,1). |
If a=2, from equation (1.7), we get
(2dy−1)(2dz−3)=1322d2+3. | (4.2) |
Replacing d by 1,2,4,5 in (4.2) respectively, we obtain
(2y−1)(2z−3)=25⋅53,(4y−1)(4z−3)=11⋅13⋅17,(8y−1)(8z−3)=5⋅4231,(5y−1)(5z−3)=33053. |
Thus we get
(d,y,z)=(1,1,664),(1,3,134),(1,27,14),(1,133,4),(1,663,2),(2,1323,1),(4,529,1). |
If a=3, from equation (1.7), we get
(3dy−1)(dz−1)=661d2+1. | (4.3) |
Replacing d by 1,2,4,5 in (4.3) respectively, we obtain
(3y−1)(z−1)=2⋅331,(6y−1)(2z−1)=5⋅232,(9y−1)(3z−1)=2⋅52⋅7⋅17,(15y−1)(5z−1)=2⋅8263. |
By computing we get that
(d,y,z)=(1,1,332),(1,221,2),(2,1,265),(2,441,1). |
If a=4, we contend d<3. Otherwise d≥4, we have 3y+z=db≥4b. If b≥300, then we have yz≥1197, which contradicts with yz≤[33054]=826. If 90≤b<300, then we have yz≥357, which contradicts with yz≤[9614]=240. Hence d<3 as desired. From equation (1.7), we get
(4dy−1)(4dz−3)=2644d2+3. | (4.4) |
Replacing d by 1,2 in (4.4) respectively, we obtain
(4y−1)(4z−3)=2647,(8y−1)(8z−3)=71⋅149. |
Thus we get
(d,y,z)=(1,662,1). |
Case 3: 90≤b≤2644,d≥7 or a≥5. Then we have either y≤5 or z≤5 by Lemma 2.7.
Subcase 1: d=1,a≥5, from equation (1.7), we get
(ay−1)z=661+3y | (4.5) |
and
(az−3)y=661+z. | (4.6) |
Replacing y by 1,2,3,4,5 in (4.5) respectively, we obtain
(a−1)z=8⋅83,(2a−1)z=23⋅29,(3a−1)z=2⋅5⋅67,(4a−1)z=673,(5a−1)z=4⋅132. |
Thus we get
(a,y,z)=(5,1,166). |
Replacing z by 1,2,4,5 in (4.6) respectively, we obtain
(a−3)y=2⋅331,(2a−3)y=3⋅13⋅17,(4a−3)y=5⋅7⋅19,(5a−3)y=2⋅32⋅37. |
By computing we get
(a,y,z)=(5,331,1),(8,51,2),(10,39,2). |
Subcase 2: d=2,a≥5, from equation (1.7), we get
(2ay−1)z=1322+y | (4.7) |
and
(2az−3)y=1322+z. | (4.8) |
Replacing y by 1,2,3,4,5 in (4.7) respectively, we obtain
(2a−1)z=52⋅53,(4a−1)z=24⋅83,(6a−1)z=113,(8a−1)z=2⋅23⋅29,(10a−1)z=7⋅191. |
By computing we know that the above equations have no positive integer solution (a,z) such that a≥5,b≥90.
Replacing z by 1,2,4,5 in (4.8) respectively, we obtain
(2a−3)y=33⋅72,(4a−3)y=22⋅331,(8a−3)y=2⋅3⋅13⋅17,(10a−3)y=1327. |
By computing we get
(a,y,z)=(6,147,1),(12,63,1),(5,189,1). |
Subcase 3: d≥4,a≥5, then we have 3y+z=db≥4b. If b≥200, then we get that yz≥797 which contradicts with yz≤[33055]=661. If 90≤b<200, then we get that yz≥357 which contradicts with yz≤[8615]=172.
Subcase 4: d≥7,a<5. We contend that a=1. Otherwise a≥2. If b≥300, then we get that yz≥2097 which contradicts with yz≤[33052]=1652. If 90≤b<300, then we get that yz≥627 which contradicts with yz≤[8612]=430. Thus a=1 as desired. From equation (1.7), we get
(dy−1)(yz−661)=661+3y2 | (4.9) |
and
(dz−3)(yz−661)=1983+z2. | (4.10) |
Replacing y by 1, 2, 3, 4, 5 in (4.9) respectively, we obtain
(d−1)(z−661)=8⋅83,(2d−1)(2z−661)=673,(3d−1)(3z−661)=42⋅43,(4d−1)(4z−661)=709,(5d−1)(5z−661)=25⋅23. |
By computing we know that the above equations have no positive integer solution (a,z) such that d≥7,b≥90.
Replacing z by 1,2,4,5 in (4.8) respectively, we obtain
(d−3)(y−661)=26⋅31,(2d−3)(2y−661)=1987,(4d−3)(4y−661)=1999,(5d−3)(5y−661)=8⋅251. |
By computing we get that
(d,y,z)=(7,1157,1),(11,909,1),(19,785,1). |
Therefore the proof of Theorem 1.2 is complete.
Since
661+12=673≡1(mod3),661+22=683≡1(mod11),661+30=691≡1(mod3),661+40=701≡1(mod5),661+48=709≡1(mod3),661+58=719≡23(mod29),661+66=727≡1(mod3),661+72=733≡1(mod3),661+78=739≡1(mod3),661+82=743≡5(mod41), |
so both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz−661=b for b∈{12,22,30,40,48,58,66,72,78,82} by Lemma 2.1.
Since
661+10=671=11⋅61,11≡61≡1(mod5),661+20=681=3⋅227,227≡7(mod20),661+26=687=3⋅229,229≡−5(mod13),661+28=689=13⋅53,661+34=695=5⋅139,139≡3(mod17),661+37=698=2⋅347,347≡14(mod37),661+38=699=3⋅233,233≡5(mod19),661+46=707=7⋅101,101≡9(mod23),661+52=713=23⋅31,661+56=717=3⋅239,239≡1(mod7),661+57=718=2⋅359,359≡17(mod57),661+60=721=7⋅103,7≡103≡1(mod3),661+62=723=3⋅241,241≡−7(mod31),661+70=731=17⋅43,17≡3(mod7),43≡1(mod7),661+56=717=3⋅239,239≡15(mod56),661+73=734=2⋅367,367≡2(mod73),661+76=737=11⋅67,661+85=746=2⋅373,373≡33(mod85),661+88=749=7⋅107,107≡19(mod88), |
so both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz−661=b for b∈{10,20,26,28,34,37,38,46,52,56,57,60,62,70,73,76,85,88} by Lemma 2.2 (i).
Since
661+31=692=22⋅173,173≡18(mod31),661+44=705=3⋅5⋅47,47≡3(mod11),661+50=711=32⋅79,79≡4(mod25),661+55=716=22⋅179,179≡14(mod55),661+61=722=2⋅192,661+64=725=52⋅29,661+80=741=3⋅13⋅19, |
so both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz−661=b for b∈{31,44,50,55,61,64} by Lemma 2.3 (i).
Since
661+47=708=22⋅3⋅59,661+59=720=24⋅32⋅5,661+68=729=36,661+71=732=22⋅3⋅61,661+77=738=2⋅32⋅41, |
by computing we know both (1.6) and (1.7) have no positive integer solution (a,d,y,z) with ayz−661=b for b∈{47,59,68,71,77}.
Since 661+27=688=24⋅43,27∤x, for any
x∈{1+2α43β,43+2α,2t+43β}, |
where α∈{0,1,2,3,4},β∈{0,1,},t∈{1,2,3,4}.661+75=736=25⋅23,75∤x, for any
x∈{1+2α23β,23+2α,2t+23β}, |
where α∈{0,1,2,3,4,5},β∈{0,1,},t∈{1,2,3,4,5} so (1.6) has no positive integer solution (a,d,y,z) with ayz−661=b for b∈{27,75} by Lemma 2.5.
Since
661+18=679=7⋅97,7≡97≡−2(mod9),661+24=685=5⋅137,5≡137≡1(mod4),661+33=694=2⋅347,347≡6(mod11),661+36=697=17⋅41,17≡41≡1(mod4),661+42=703=19⋅37,19≡37≡1(mod3),661+45=706=2⋅353,353≡2(mod9), |
so (1.6) has no positive integer solution (a,d,y,z) with ayz−661=b for b∈{18,24,33,36,42,45} by Lemma 2.2 (ii).
For any b=3t,1≤t<29, (1.7) has no positive integer solution (a,d,y,z) with ayz−661=b by Lemma 2.4.
Since
661+3=23⋅83,661+6=2⋅32⋅37,661+9=2⋅5⋅67,661+15=22⋅132, |
661+21=2⋅11⋅31,661+39=22⋅52⋅7,661+51=23⋅89, |
so by computing we get that (a,d,y,z)=
(2, 29, 4, 83), (2, 112, 1, 332), (8, 28, 1, 83), (83, 3, 1, 8), (332, 1, 1, 2), (23, 5, 1, 29),
(29, 4, 1, 23), (2, 8, 5, 67), (5, 15, 1, 134), (26, 1, 2, 13), (2, 2, 11, 31), (11, 3, 1, 62),
(2, 1, 14, 25), (5, 1, 4, 35), (2, 7, 1, 356),
are positive integer solutions of (1.6).
We are now in a position to discuss
b∈{1,2,4,5,7,8,11,13,14,16,17,19,23,25,28,29,32,35,41,43,49,53,59,65,67,74,79}. |
Since
661+1=2⋅331,661+2=3⋅13⋅17,661+4=5⋅7⋅19,661+5=2⋅32⋅37,661+7=22⋅167,661+8=3⋅223,661+11=25⋅3⋅7,661+13=2⋅337,661+14=33⋅52661+16=677,661+17=2⋅3⋅113,661+19=23⋅5⋅17,661+23=22⋅32⋅19,661+25=2⋅73,661+28=13⋅53,661+29=2⋅3⋅5⋅23,661+32=32⋅7⋅11,661+35=23⋅3⋅29,661+41=2⋅33⋅13,661+43=26⋅11,661+49=2⋅5⋅71,661+53=2⋅3⋅7⋅17,661+59=24⋅5⋅32,661+65=2⋅3⋅112,661+67=23⋅7⋅13,661+74=3⋅5⋅72,661+79=22⋅5⋅37, |
so by computing we get that (a,d,y,z)=
(662, 2, 1, 1), (1, 663, 1, 662), (1, 333, 2, 331), (2, 332, 1, 331), (331, 3, 1, 2), (663, 1, 1, 1),
(1, 332, 1, 663), (1, 112, 3, 221), (1, 32, 13, 51), (1, 28, 17, 39), (3, 111, 1, 221), (3, 14, 13, 17),
(13, 26, 1, 51), (13, 10, 3, 17), (17, 20, 1, 39), (17, 8, 3, 13), (39, 9, 1, 17), (51, 7, 1, 13),
(221, 2, 1, 3), (7, 6, 5, 19), (19, 3, 5, 7), (7, 24, 1, 95), (19, 9, 1, 35), (35, 5, 1, 19),
(95, 2, 1, 7), (1, 11, 18, 37), (1, 67, 2, 333), (9, 15, 1, 74), (74, 2, 1, 9), (6, 8, 3, 37),
(111, 1, 2, 3), (4, 24, 1, 167), (3, 28, 1, 223), (32, 2, 1, 21), (24, 1, 4, 7), (28, 1, 3, 8),
(21, 3, 1, 32), (2, 26, 1, 337), (15, 1, 5, 9), (9, 2, 3, 25), (25, 2, 1, 27), (1, 7, 6, 113),
(2, 20, 1, 339), (1, 3, 17, 40), (20, 1, 2, 17), (9, 1, 4, 19), (14, 2, 1, 49), (5, 1, 6, 23),
(6, 4, 1, 115), (11, 2, 1, 63), (3, 1, 11, 21), (4, 1, 6, 29), (4, 5, 1, 174), (9, 1, 2, 39),
(2, 1, 11, 32), (1, 3, 5, 142), (7, 1, 2, 51), (5, 2, 1, 147), (2, 1, 5, 74)
are the solutions of (1.6) and (a,d,y,z)=
(662, 4, 1, 1), (1, 337, 2, 331), (1, 665, 1, 662), (1, 1987, 662, 1), (1, 995, 331, 2), (2, 334, 1, 331),
(2, 994, 331, 1), (331, 5, 1, 2), (331, 7, 2, 1), (663, 2, 1, 1), (1, 333, 1, 663), (1, 995, 663, 1),
(1, 115, 3, 221), (1, 83, 51, 13), (1, 67, 39, 17), (3, 112, 1, 221), (3, 332, 221, 1), (3, 28, 13, 17),
(3, 32, 17, 13), (13, 13, 3, 17), (17, 59, 39, 1), (17, 11, 3, 13), (39, 10, 1, 17), (39, 26, 17, 1),
(51, 8, 1, 13), (51, 20, 13, 1), (221, 5, 3, 1), (1, 167, 1, 665), (665, 1, 1, 1), (1, 37, 5, 133),
(1, 101, 133, 5), (1, 31, 35, 19), (1, 73, 95, 7), (5, 34, 1, 133), (5, 10, 7, 19), (5, 16, 19, 7),
(133, 2, 1, 5), (5, 100, 133, 1), (333, 1, 1, 2), (18, 8, 1, 37), (222, 2, 3, 1), (3, 11, 6, 37),
(3, 67, 111, 2), (37, 11, 18, 5), (2, 200, 333, 1), (334, 1, 2, 1), (167, 1, 1, 4), (1, 29, 3, 223),
(6, 5, 16, 7), (8, 23, 84, 1), (84, 1, 1, 8), (96, 2, 7, 1), (112, 1, 3, 2), (45, 1, 3, 5),
(27, 2, 1, 25), (75, 2, 9, 1), (1, 127, 677, 1), (3, 7, 2, 113), (6, 20, 113, 1), (34, 1, 5, 4),
(4, 2, 9, 19), (13, 2, 1, 53), (15, 1, 2, 23), (9, 1, 7, 11), (33, 2, 21, 1), (12, 1, 2, 29),
(12, 5, 58, 1), (3, 2, 4, 58), (27, 1, 13, 2), (26, 2, 27, 1), (8, 1, 18, 5), (2, 2, 3, 121),
(2, 1, 13, 28), (15, 2, 49, 1)
are the solutions of (1.7).
We are now in a position to discuss b∈{83,86,89}.
Since 661+83=23⋅3⋅31, 661+86=32⋅83 so by computing we get that (a,d,y,z)=(1,9,1,744),(9,1,1,83) are solutions of (1.7).
Since 661+89=2⋅3⋅53, so by computing we get that (1.7) has no positive integer solution.
This finishes the proof of Theorem 1.3.
If ay>2, then from ayz−661=661y+zd<2z, we get that z≤(ay−2)z<661 which contradicts with z>661y. Hence a=y=1 or a=1,y=2 or a=2,y=1.
a=y=1 implies that (d−1)(z−661)=2⋅661. So
(d,z)=(2,1983),(3,1322),(662,663),(1323,662). |
a=1,y=2 implies that (2d−1)(2z−661)=5⋅661. So
(d,z)=(1,1983),(3,661),(331,333),(1653,331). |
a=2,y=1 implies that (2d−1)(2z−661)=3⋅661. So
(d,z)=(1,1322),(2,661),(331,332),(992,331). |
This concludes the proof of Theorem 1.4.
All authors declare no conflicts of interest in this paper.
[1] | Z. Cao, An intruduction to Diophantine equations, Haerbin Industril university Press, 400 (1989). |
[2] | N. Franceschine, Egyptian fractions, Sonoma State Coll., 1978. |
[3] | Z. Ke, Q. Sun, X. Zhang, On the Diophantine equatins 4n=1x+1y+1z, J. Sichuan University (in Chinese), 3 (1964), 23-37. |
[4] | Z. Ke, Q. Sun, Some conjecture and problem in Number Theorey, Chinese Journal of Nature (in Chinese), 7 (1979), 411-413. |
[5] | Y. Liu, On a problem of unit fraction, J. Sichuan University (in Chinese), 2 (1984), 113-114. |
[6] | Palama, Sull’s equarione diofantea 4n=1x+1y+1z, Boll. Union Mat. Ital, 13 (1958), 65-72. |
[7] | Palama, Sull’s equarione diofantea 4n=1x+1y+1z, Boll. Union Mat. Ital, 14 (1959), 82-94. |
[8] | L. A. Rosati, Sull’s equarione diofantea 4b=1x1+1x2+1x3, Boll. Union Mat. Ital, 9 (1954), 59-63. |
[9] | B.M.Stewart, Theory of numbers, Macmillan, New York, (1964), 198-207. |
[10] | Yamamoto, On the Diophantine equatins 4n=1x+1y+1z, K. Men. Fac. Sci. Kyushu University, Ser.A., 19 (1965), 37-47. |