-
AIMS Allergy and Immunology, 2018, 2(3): 113-125. doi: 10.3934/Allergy.2018.3.113
Review
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Unique natural and adaptive response mechanisms to control and eradicate HIV infection
Departments of Microbiology & Immunology, Medicine & Pathology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, SUNY; Chief of Service, Laboratory Medicine, Erie County Medical Center Buffalo, NY, USA
Received: , Accepted: , Published:
References
1. Center for Disease Control and Prevention (1981) Pneumocystis pneumonia. MMWR 30: 1–3.
2. Center for Disease Control and Prevention (2015) Prevalence of diagnosed and undiagnosed HIV infection-2008–2012. MMWR 64: 657–662.
3. Wainberg MA, Zaharatos GJ, Brenner BG (2010) Development of antiretroviral drug resistance. N Eng J Med 365: 637–645.
4. Maartens G, Celum C, Lewin SR (2014) HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 384: 258–271.
5. Huang Z, Tomitaka A, Raymond A, et al. (2017) Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Ther 24: 377–384.
6. Chun TW, Engel D, Mizell SB, et al. (1998) Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 188: 83–91.
7. Finzi D, Hemankova M, Pierson T, et al. (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278: 1295–1300.
8. McElrath MJ, Steinman RM, Cohn ZA, et al. (1991) Latent HIV-1 infection in enriched populations of blood monocytes and T cells from seropositive patients. J Clin Inv 87: 27–30.
9. Chun TW, Engel D, Berrey MM, et al. (1998) Early establishment of a pool of latently infected, resting CD4 (+) T cells during primary HIV infection. PNAS 95: 8869–8873.
10. Bagasra O, Lavi E, Bobroski I, et al. (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10: 573–585.
11. Fischer-Smith T, Croul S, Sverstiuk AE, et al. (2001) CNS invasion by CD14+/CD16+ peripheral blood derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7: 528–541.
12. Petito CK, Chen H, Mastri AR, et al. (1999) HIV infection of choroid plexus in AIDS and asymptomatic HIV infected patients suggests that choroid plexus might be a good reservoir of productive infection. J Neurovirol 5: 670–677.
13. Chun TW, Carruth L, Finzi D, et al. (1997) Quantification of latent tissue reservoirs and total boy viral load in HIV-1 infection. Nature 387: 183–188.
14. Chun TW, Nickle DC, Justement JS, et al. (2008) Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Inf Dis 197: 714–720.
15. Smith PD, Meng G, Salazar-Gonzalez JF, et al. (2003) Macrophage HIV-1 infection and the potential gastrointestinal tract reservoir. J Leuk Bio 74: 642–649.
16. Lambert-Niclot S, Peytavin G, Duvivier C, et al. (2010) Low frequency of intermittent HIV-1 semen excretion on patients treated with darunavir-ritonavir at 600/100 milligrams twice a day plus two nucleoside reverse transcriptase inhibitors or monotherapy. Antimicrob Agents Chemo 54: 4910–4913.
17. Cu-Uvin S, DeLong AK, Venkatesh KK, et al. (2010) Genital track HIV-1 RNA shedding among women with below detectable plasma viral load. AIDS 24: 2489–2497.
18. Hutter G, Nowak D, Mossner M, et al. (2009) Long term control of HIV by CCR5 Delta 32/Delta 32 stem-cell transplantation. N Engl J Med 360: 692–968.
19. Perelson AS, Esunger P, Cao Y, et al. (1997) Decay characteristics of HIV-1 infected compartments during combination therapy. Nature 387: 188–191.
20. Evering TH, Mehandru S, Racz P, et al. (2012) Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection. PLoS Pathog 8: e1002306.
21. Kearney MF, Spindler J, Shao W, et al. (2014) Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog 10: e1004010.
22. Cáceres CF, Mayer KH, Baggaley R, et al. (2015) PrEP implementation science: state-of-the-art and research agenda. J Int Aids Soc 18: 20527.
23. World Health Organization (2017) Implementation tool for pre-exposure prophylaxis (PrEP) of HIV infection. Policy Brief WHO Reference number: WHO/HIV/2017.19.
24. Chomont N, El-Far M, Ancuta P, et al. (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15: 893–900.
25. Kulpa DA, Lawani M, Cooper A, et al. (2013) PD-1 co-inhibitory signals: the link between pathogenesis and protection. Semin Immunol 25: 219–227.
26. Porichis F, Kaufmann DE (2012) Role of PD-1 in HIV-1 pathogenesis and as a target for therapy. Curr HIV-AIDS Rep 9: 81–90.
27. Reguzova AY, Karpenko LI, Mechetina LV, et al. (2015) Peptide MHC multimer-based monitoring of CD8 T cells in HIV-1 infection and HIV vaccine development. Expert Rev Vaccines 14: 69–84.
28. Zhang JY, Zhang Z, Wang XZ, et al. (2007) PD-1 upregulation is correlated with HIV specific memory CD8 (+) T cells exhaustion in typical progressors but not in long-term non-progressors. Blood 109: 4671–4678.
29. Cohen MS, Chen YQ, McCauley M, et al. (2016) Antiretroviral therapy for the prevention of HIV-1 transmission. N Engl J Med 375: 830–839.
30. Chun TW, Stuyver L, Misell SB, et al. (1997) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. PNAS 94: 13193–13197.
31. Wong JK, Hezareh M, Gunthard HF, et al. (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278: 1291–1295.
32. Finzi D, Blankson I, Siliciano JD, et al. (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5: 512–517.
33. Deeks SG (2012) HIV: shock and kill. Nature 487: 439–440.
34. Siliciano JD, Kajdas J, Finzi D, et al. (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9: 727–728.
35. Ruelas DS, Greene WC (2013) An integrated overview of HIV-1 latency. Cell 155: 519–529.
36. Donahue DA, Wainberg MA (2013) Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 10: 11.
37. Strain MC, Little SJ, Daar ES, et al. (2005) Effect of treatment during primary infection on establishment and clearance of cellular reservoirs of HIV-1. J Infect Dis 191: 1410–1418.
38. Procopio FA, Fromentin R, Kulpa DA, et al. (2015) A novel assay to measure the magnitude of the inducible viral reservoir in HIV infected individuals. Ebiomedicine 2: 872–881.
39. Walker B, McMichael A (2012) The T-cell response to HIV. Cold Spring Harb Perspect Med 2: e007054.
40. Lia MK, Hawkins N, Ritchie AI, et al. (2013) CHAVI Core B. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest 123: 380–393.
41. Ferrari G, Korber B, Goonetilde N, et al. (2011) Relationship between functional profile of HIV-1 specific CD8 T cells and epitope variability with the selection of escape mutants in acute HIV-1 infection. PLoS Pathog 7: e1001273.
42. Streeck H, Brumme ZL, Anastario M, et al. (2008) Antigen load and viral sequence diversification determine the functional profile of HIV-1 specific CD8+ T cells. PLoS Med 5: e100.
43. Pollana J, Nonsignori M, Moody MA, et al. (2013) Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity (ADCC) responses. Curr HIV Res 11: 378–387.
44. Liao HX, Bonsignori M, Alam SM, et al. (2013) Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity 38: 176–186.
45. Mascola JR, D'Souza P, Gilbert, et al. (2005) Recommendations for the design and use of standard virus panels to assess neutralizing antibody responses elicited by candidate human immunodeficiency virus type 1 vaccines. J Virol 79: 10103–10107.
46. Xu L, Pegu A, Rao E, et al. (2017) Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 358: 85–90.
47. Julg B, Liu PT, Wagh K, et al. (2017) Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Sci Trans Med 9: eaao4235.
48. McCoy LE, Burton DR (2017) Identification and specificity of broadly neutralizing antibodies against HIV. Immunol Rev 275: 11–20.
49. Amsterdam D (2015) Immunotherapeutic approaches for the control and eradication of HIV. Immunol Inv 44: 719–730.
50. Hirsch AJ (2010) The use of RNAi-based screens to identify host proteins involved in viral replication. Future Microbiol 5: 303–311.
51. Jacqua JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418: 435–438.
52. Nishitsuji H, Kohara M, Kannagi M, et al. (2006) Effective suppression of human immunodeficiency virus type 1 through a combination of short- and long-hairpin RNAs targeting essential sequences for retroviral integration. J Virol 80: 7658–7666.
53. Suzuki K, Ishida T, Yamagishi M, et al. (2011) Transcriptional gene silencing of HIV-1 through promoter targeting RNA is highly specific. RNA Biol 8: 1035–1046.
54. Taksuchi Y, Nagumo T, Hashino H (1988) Low fidelity of cell-free DNA synthesis by reverse transcriptase of human immunodeficiency virus. J Virol 62: 3000–3002.
55. Knoepfel SA, Centlivre M, Liu YP, et al. (2012) Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol 1: 79–90.
56. Anderson J, Akkina R (2005) CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal resist HIV-1 infection. Retrovirology 2: 53.
57. Martinez MA, Clotet B, Este JA (2002) RNA interference of HIV replication. Trends Immunol 3: 559–561.
58. Boutimah F, Eekels JJ, Liu YP, et al. (2013) Antiviral strategy combining antiretroviral drugs with RNAi-mediated attack on HIV-1 and cellular co-factors. Antiviral Res 98: 121–129.
59. Wolstein O, Boyd M, Millington M, et al. (2014) Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. Mol Ther Meth Clin Dev 1: 11.
60. Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: Prospects and challenges. Nat Med 21: 121–131.
61. Badia R, Rivera-Munoz E, Clotet B, et al. (2014) Gene editing using a zinc-finger nuclease mimicking the CCR5Delta32 mutation induces resistance to CCR5-using HIV-1. J Antimicrob Chemother 69: 1755–1759.
62. Perez EE, Wang J, Miller JC, et al. (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26: 808–816.
63. Yao Y, Nashun B, Zhou T, et al. (2012) Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther 23: 238–242.
64. Wilen CB, Wang J, Tilton JC, et al. (2011) Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 7: e1002020.
65. Didigu CA, Wilen CB, Wang J, et al. (2014) Simultaneous zinc-finger nuclease editing of HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood 123: 61–69.
66. Shi B, Li J, Shi X, et al. (2017) TALEN-mediated knockout of CCR5 confers protection against infection of human immunodeficiency virus. J AIDS 74.
67. Tebas P, Stein D, Tang WW, et al. (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370: 901–910.
68. Mealer DA, Brennan AL, Jiang S, et al. (2013) Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 24: 245–258.
69. Strong CL, Guerra HP, Mathew KR, et al. (2015) Damaging the integrated HIV proviral DNA with TALENs. PLoS One 10: e0125652.
70. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167–170.
71. Cong L, Ran FA, Cox D, et al. (2013) Multiplex genome engineering using CRISP/Cas systems. Science 339: 819–823.
72. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Case9 for genome engineering. Cell 157: 1262–1278.
73. Ebina H, Misawa N, Kanemura Y, et al. (2013) Harnessing the CRIPSR/Cas 9 system to disrupt latent HIV-1 provirus. Sci Rep 3: 2510.
74. Hou P, Chen S, Wang S, et al. (2015) Genome editing of CXCR4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection. Sci Rep 5: 15577.
75. Ye L, Wang J, Beyer AI, et al. (2014) Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. PNAS 111: 9591–9596.
76. Dampier W, Nonnemacher MR, Sullivan NT, et al. (2014) HIV excision utilizing CRISPR/Cas 9 technology: attacking the proviral quasispecies in reservoirs to achieve a cure. MOJ Immunol 1: 00022.
77. Zhu W, Lei R, De Duff Y, et al. (2015) The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12: 22.
78. Wang Z, Pan Q, Gendron P, et al. (2016) CRISPR/Cas-9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15: 481–489.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)