This work deals with a mathematical analysis of sodium's transport in a tubular architecture of a kidney nephron. The nephron is modelled by two counter-current tubules. Ionic exchange occurs at the interface between the tubules and the epithelium and between the epithelium and the surrounding environment (interstitium). From a mathematical point of view, this model consists of a 5
Citation: Marta Marulli, Vuk Miliši$\grave{\rm{c}}$, Nicolas Vauchelet. Reduction of a model for sodium exchanges in kidney nephron[J]. Networks and Heterogeneous Media, 2021, 16(4): 609-636. doi: 10.3934/nhm.2021020
This work deals with a mathematical analysis of sodium's transport in a tubular architecture of a kidney nephron. The nephron is modelled by two counter-current tubules. Ionic exchange occurs at the interface between the tubules and the epithelium and between the epithelium and the surrounding environment (interstitium). From a mathematical point of view, this model consists of a 5
| [1] |
Human nephron number: Implications for health and disease. Pediatr. Nephrol. (2011) 26: 1529-1533.
|
| [2] |
J. S. Clemmer, W. A. Pruett, T. G. Coleman, J. E. Hall and R. L. Hester, Mechanisms of blood pressure salt sensitivity: New insights from mathematical modeling, Am. J. Physiol. Regul. Integr. Comp. Physiol., 312 (2016), R451–R466. doi: 10.1152/ajpregu.00353.2016
|
| [3] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edition, volume 325, Berlin: Springer, 2016. doi: 10.1007/978-3-662-49451-6
|
| [4] | A. Edwards, M. Auberson, S. Ramakrishnan and O. Bonny, A model of uric acid transport in the rat proximal tubule, Am. J. Physiol. Renal Physiol., (2019), F934–F947. |
| [5] |
Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: A modeling study. Am. J. Physiol. Renal Physiol. (2016) 310: F237-F247.
|
| [6] |
V. Giovangigli, Z.-B. Yang and W.-A. Yong, Relaxation limit and initial-layers for a class of hyperbolic-parabolic systems, SIAM J. Math. Anal., 50 (2018), 4655–4697. doi: 10.1137/18M1170091
|
| [7] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, volume 80., Birkhäuser/Springer, Basel, 1984. doi: 10.1007/978-1-4684-9486-0
|
| [8] | E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws, volume 3/4., Paris: Ellipses, 1991. |
| [9] |
A quantitative systems physiology model of renal function and blood pressure regulation: Application in salt-sensitive hypertension. CPT Pharmacometrics Syst. Pharmacol. (2017) 6: 393-400.
|
| [10] |
The multiplication principle as the basis for concentrating urine in the kidney. Journal of the American Society of Nephrology (2001) 12: 1566-1586.
|
| [11] |
M. Heida, R. I. A. Patterson and D. R. M. Renger, Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space, J. Evol. Equ., 19 (2019), 111–152. doi: 10.1007/s00028-018-0471-1
|
| [12] |
F. James, Convergence results for some conservation laws with a reflux boundary condition and a relaxation term arising in chemical engineering, SIAM J. Math. Anal., 29 (1998), 1200–1223. doi: 10.1137/S003614109630793X
|
| [13] |
S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Commun. Pure Appl. Math., 48 (1995), 235–276. doi: 10.1002/cpa.3160480303
|
| [14] |
A computational model for simulating solute transport and oxygen consumption along the nephrons. Am. J. Physiol. Renal Physiol. (2016) 311: F1378-F1390.
|
| [15] |
Mathematical modeling of kidney transport. Wiley Interdiscip Rev. Syst. Biol. Med. (2013) 5: 557-573.
|
| [16] |
A. T. Layton and A. Edwards, Mathematical Modeling in Renal Physiology, Springer, 2014. doi: 10.1007/978-3-642-27367-4
|
| [17] |
Distribution of henle's loops may enhance urine concentrating capability. Biophys. J. (1986) 49: 1033-1040.
|
| [18] |
P. G. LeFloch, Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves, Basel: Birkhäuser, 2002. doi: 10.1007/978-3-0348-8150-0
|
| [19] |
M. Marulli, A. Edwards, V. Milišić and N. Vauchelet, On the role of the epithelium in a model of sodium exchange in renal tubules, Math. Biosci., 321 (2020), 108308, 12 pp. doi: 10.1016/j.mbs.2020.108308
|
| [20] |
V. Milišić and D. Oelz, On the asymptotic regime of a model for friction mediated by transient elastic linkages, J. Math. Pures Appl. (9), 96 (2011), 484–501. doi: 10.1016/j.matpur.2011.03.005
|
| [21] |
Hormonal regulation of salt and water excretion: A mathematical model of whole kidney function and pressure natriuresis. Am. J. Physiol. Renal Physiol. (2014) 306: F224-F248.
|
| [22] |
R. Natalini and A. Terracina, Convergence of a relaxation approximation to a boundary value problem for conservation laws, Comm. Partial Differential Equations, 26 (2001), 1235–1252. doi: 10.1081/PDE-100106133
|
| [23] | Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. Am. J. Physiol. Renal Physiol. (2012) 304: F653-F664. |
| [24] | B. Perthame, Transport Equations Biology, Basel: Birkhäuser, 2007. |
| [25] |
B. Perthame, N. Seguin and M. Tournus, A simple derivation of BV bounds for inhomogeneous relaxation systems, Commun. Math. Sci., 13 (2015), 577–586. doi: 10.4310/CMS.2015.v13.n2.a17
|
| [26] | J. L. Stephenson, Urinary Concentration and Dilution: Models, American Cancer Society, (2011), 1349–1408. |
| [27] | M. Tournus, Modèles D'échanges Ioniques Dans le Rein: Théorie, Analyse Asymptotique et Applications Numériques, PhD thesis, Université Pierre et Marie Curie, France, 2013. |
| [28] |
M. Tournus, A. Edwards, N. Seguin and B. Perthame, Analysis of a simplified model of the urine concentration mechanism, Netw. Heterog. Media, 7 (2012), 989–1018. doi: 10.3934/nhm.2012.7.989
|
| [29] |
A model of calcium transport along the rat nephron. Am. J. Physiol. Renal Physiol. (2013) 305: F979-F994.
|
| [30] |
A mathematical model of the rat nephron: Glucose transport. Am. J. Physiol. Renal Physiol. (2015) 308: F1098-F1118.
|
| [31] |
A mathematical model of the rat kidney: K$^{+}$-induced natriuresis. Am. J. Physiol. Renal Physiol. (2017) 312: F925-F950.
|
| [32] |
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3
|