Constant in two-dimensional $p$-compliance-network problem
-
Received:
01 April 2013
Revised:
01 October 2013
-
-
Primary: 49J45; Secondary: 49Q10, 74P05.
-
-
We consider the problem of the minimization of the $p$-compliance functional where the
control variables $\Sigma$ are taking among closed connected one-dimensional
sets. We prove some estimate from below
of the $p$-compliance functional in terms of the
one-dimensional Hausdorff measure of $\Sigma$ and compute the value of a constant
$\theta(p)$ appearing usually in $\Gamma$-limit functional of the rescaled $p$-compliance
functional.
Citation: Al-hassem Nayam. Constant in two-dimensional $p$-compliance-network problem[J]. Networks and Heterogeneous Media, 2014, 9(1): 161-168. doi: 10.3934/nhm.2014.9.161
Related Papers:
[1] |
Al-hassem Nayam .
Constant in two-dimensional $p$-compliance-network problem. Networks and Heterogeneous Media, 2014, 9(1): 161-168.
doi: 10.3934/nhm.2014.9.161
|
[2] |
Giuseppe Buttazzo, Filippo Santambrogio .
Asymptotical compliance optimization for connected networks. Networks and Heterogeneous Media, 2007, 2(4): 761-777.
doi: 10.3934/nhm.2007.2.761
|
[3] |
Al-hassem Nayam .
Asymptotics of an optimal compliance-network problem. Networks and Heterogeneous Media, 2013, 8(2): 573-589.
doi: 10.3934/nhm.2013.8.573
|
[4] |
Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli .
A rate-independent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6(1): 145-165.
doi: 10.3934/nhm.2011.6.145
|
[5] |
Paolo Tilli .
Compliance estimates for two-dimensional
problems with Dirichlet region of prescribed length. Networks and Heterogeneous Media, 2012, 7(1): 127-136.
doi: 10.3934/nhm.2012.7.127
|
[6] |
Alberto Bressan, Sondre Tesdal Galtung .
A 2-dimensional shape optimization problem for tree branches. Networks and Heterogeneous Media, 2021, 16(1): 1-29.
doi: 10.3934/nhm.2020031
|
[7] |
Lorenza D'Elia .
$ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17(1): 15-45.
doi: 10.3934/nhm.2021022
|
[8] |
Jean-Bernard Baillon, Guillaume Carlier .
From discrete to continuous Wardrop equilibria. Networks and Heterogeneous Media, 2012, 7(2): 219-241.
doi: 10.3934/nhm.2012.7.219
|
[9] |
Manuel Friedrich, Bernd Schmidt .
On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342.
doi: 10.3934/nhm.2015.10.321
|
[10] |
Xin Yang Lu .
Regularity of densities in relaxed and penalized average distance problem. Networks and Heterogeneous Media, 2015, 10(4): 837-855.
doi: 10.3934/nhm.2015.10.837
|
-
Abstract
We consider the problem of the minimization of the $p$-compliance functional where the
control variables $\Sigma$ are taking among closed connected one-dimensional
sets. We prove some estimate from below
of the $p$-compliance functional in terms of the
one-dimensional Hausdorff measure of $\Sigma$ and compute the value of a constant
$\theta(p)$ appearing usually in $\Gamma$-limit functional of the rescaled $p$-compliance
functional.
References
[1]
|
D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945-963. doi: 10.1017/S0308210500030006
|
[2]
|
G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Networks and Heterogeneous Media, 2 (2007), 761-777. doi: 10.3934/nhm.2007.2.761
|
[3]
|
G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752-769. doi: 10.1051/cocv:2006020
|
[4]
|
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Basel, 1993. doi: 10.1007/978-1-4612-0327-8
|
[5]
|
S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Conv. Anal., 12 (2005), 145-158.
|
[6]
|
P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, Networks and Heterogeneous Media, 7 (2012), 127-136. doi: 10.3934/nhm.2012.7.127
|
[7]
|
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3
|
-
-
This article has been cited by:
1.
|
Bohdan Bulanyi, Antoine Lemenant,
Regularity for the planar optimalp-compliance problem,
2021,
27,
1292-8119,
35,
10.1051/cocv/2021035
|
|
2.
|
Davide Zucco,
Dirichlet conditions in Poincaré–Sobolev inequalities: the sub-homogeneous case,
2019,
58,
0944-2669,
10.1007/s00526-019-1547-7
|
|
3.
|
Bohdan Bulanyi,
On the importance of the connectedness assumption in the statement of the optimal p-compliance problem,
2021,
499,
0022247X,
125064,
10.1016/j.jmaa.2021.125064
|
|
4.
|
Bohdan Bulanyi,
Partial regularity for the optimal p-compliance problem with length penalization,
2022,
61,
0944-2669,
10.1007/s00526-021-02073-8
|
|
-
-