This manuscript demonstrates the existence, uniqueness, and different kinds of Ulam stability for a $ \mathtt{q} $-Caputo implicit fractional jerk coupled system involving $ \mathtt{q} $-fractional Erdélyi-Kober integral conditions. The existence and uniqueness results were investigated by employing the Leray-Schauder alternative and the Banach contraction mapping principle. We also derived various kinds of Ulam stability under specific conditions. We provided an example to verify our main results.
Citation: Jiafa Xu, Yujun Cui, Khansa Hina Khalid, Akbar Zada, Ioan-Lucian Popa, Afef Kallekh. Existence and stability analysis for a coupled system of $ \mathtt{q} $-fractional implicit jerk Caputo derivatives with $ \mathtt{q} $-Erdélyi-Kober fractional integral conditions[J]. Mathematical Modelling and Control, 2025, 5(3): 258-279. doi: 10.3934/mmc.2025018
This manuscript demonstrates the existence, uniqueness, and different kinds of Ulam stability for a $ \mathtt{q} $-Caputo implicit fractional jerk coupled system involving $ \mathtt{q} $-fractional Erdélyi-Kober integral conditions. The existence and uniqueness results were investigated by employing the Leray-Schauder alternative and the Banach contraction mapping principle. We also derived various kinds of Ulam stability under specific conditions. We provided an example to verify our main results.
| [1] | S. Begum, A. Zada, S. Saifullah, I. L. Popa, Dynamical behavior of random fractional integro-differential equation via Hilfer fractional derivative, UPB Sci. Bull. Ser. A, 84 (2022), 137–148. |
| [2] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779 |
| [3] | I. Podlubny, Fractional differential equations, Vol. 198, Academic Press, Inc., San Diego, CA, 1999. |
| [4] |
U. Riaz, A. Zada, Analysis of $(\alpha, \beta)$-order coupled implicit Caputo fractional differential equations using topological degree method, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 897–915. https://doi.org/10.1515/ijnsns-2020-0082 doi: 10.1515/ijnsns-2020-0082
|
| [5] |
H. Waheed, A. Zada, R. Rizwan, I. L. Popa, Controllability of coupled fractional integrodifferential equations, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 2113–2144. https://doi.org/10.1515/ijnsns-2022-0015 doi: 10.1515/ijnsns-2022-0015
|
| [6] |
B. Ahmad, J. J. Neito, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091
|
| [7] |
N. Laskin, Fractional market dynamics, Phys. A.: Stat. Mech. Appl., 287 (2000), 482–492. https://doi.org/10.1016/S0378-4371(00)00387-3 doi: 10.1016/S0378-4371(00)00387-3
|
| [8] |
B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 83 (2016), 234–241. https://doi.org/10.1016/j.chaos.2015.12.014 doi: 10.1016/j.chaos.2015.12.014
|
| [9] |
Z. Ali, A. Zada, K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl., 2018 (2018), 175. https://doi.org/10.1186/s13661-018-1096-6 doi: 10.1186/s13661-018-1096-6
|
| [10] | F. H. Jackson, On $\mathtt{q}$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
| [11] |
R. P. Agarwal, Certain fractional $\mathtt{q}$-integrals and q-derivatives, Math. Proc. Cambridge Philos. Soc., 66 (1969), 365–370. https://doi.org/10.1017/s0305004100045060 doi: 10.1017/s0305004100045060
|
| [12] |
W. A. Al-Salam, Some fractional $\mathtt{q}$-integrals and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
|
| [13] | T. Ernst, A comprehensive treatment of $\mathtt{q}$-calculus, Birkhäuser, Basel, 2012. https://doi.org/10.1007/978-3-0348-0431-8 |
| [14] |
T. Li, A. Zada, S. Faisal, Hyers–Ulam stability of nth order linear differential equations, J. Nonlinear. Sci. Appl., 9 (2016), 2070–2075. https://doi.org/10.22436/jnsa.009.05.12 doi: 10.22436/jnsa.009.05.12
|
| [15] | V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
| [16] |
W. Wang, K. H. Khalid, A. Zada, S. Ben Moussa, J. Ye, $\mathtt{q}$-fractional Langevin differential equation with $\mathtt{q}$-fractional integral conditions, Mathematics, 11 (2023), 2132. https://doi.org/10.3390/math11092132 doi: 10.3390/math11092132
|
| [17] |
A. Zada, M. Alam, K. H. Khalid, R. Iqbal, I. L. Popa, Analysis of $q$-fractional implicit differential equation with nonlocal Riemann-Liouville and Erdélyi-Kober $q$-fractional integral conditions, Qual. Theory Dyn. Syst., 21 (2022), 93. https://doi.org/10.1007/s12346-022-00623-9 doi: 10.1007/s12346-022-00623-9
|
| [18] | M. Braun, Qualitative theory of differential equations, Springer, New York, 2013. https://doi.org/10.1007/978-1-4612-4360-1_4 |
| [19] | D. R. Smart, Fixed point theorems, Cambridge University Press, London, 1974. |
| [20] | S. M. Ulam, A collection of mathematical problems, Interscience, New York, 1960. |
| [21] |
D. H. Hyers, On the stability of linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
|
| [22] | S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-9637-4 |
| [23] |
J. Wang, A. Zada, H. Waheed, Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem, Math. Methods Appl. Sci., 42 (2019), 6706–6732. https://doi.org/10.1002/mma.5773 doi: 10.1002/mma.5773
|
| [24] |
A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. https://doi.org/10.1016/j.amc.2015.09.040 doi: 10.1016/j.amc.2015.09.040
|
| [25] |
A. Zada, S. Shaleena, T. Li, Stability analysis of higher order nonlinear differential equations in $\beta$-normed spaces, Math. Meth. App. Sci., 42 (2019), 1151–1166. https://doi.org/10.1002/mma.5419 doi: 10.1002/mma.5419
|
| [26] |
A. Zada, H. Waheed, Stability analysis of implicit fractional differential equation with anti-periodic integral boundary value problem, Ann. Univ. Paedagog. Cracov. Stud. Math., 19 (2020), 5–25. https://doi.org/10.2478/aupcsm-2020-0001 doi: 10.2478/aupcsm-2020-0001
|
| [27] |
S. H. Schot, Jerk: the time rate of change of acceleration, Am. J. Phys., 46 (1978), 1090–1094. https://doi.org/10.1119/1.11504 doi: 10.1119/1.11504
|
| [28] |
H. P. W. Gottleib, Simple nonlinear jerk functions with periodic solutions, Am. J. Phy., 66 (1998), 903–906. https://doi.org/10.1119/1.18980 doi: 10.1119/1.18980
|
| [29] |
S. J. Linz, Nonlinear dynamical models and jerk motion, Am. J. Phy., 65 (1997), 523–526. https://doi.org/10.1119/1.18594 doi: 10.1119/1.18594
|
| [30] |
R. A. El-Nabulsi, Jerk in planetary systems and rotational dynamics, nonlocal motion relative to earth and nonlocal fluid dynamics in rotating earth frame, Earth Moon Planets, 122 (2018), 15–41. https://doi.org/10.1007/s11038-018-9519-z doi: 10.1007/s11038-018-9519-z
|
| [31] |
M. S. Rahman, A. S. M. Z. Hasan, Modified harmonic balance method for the solution of nonlinear jerk equations, Results Phys., 8 (2018), 893–897. https://doi.org/10.1016/j.rinp.2018.01.030 doi: 10.1016/j.rinp.2018.01.030
|
| [32] |
H. A. Rothbart, A. M. Wahl, Mechanical designs and systems handbook, J. Appl. Mech., 32 (1965), 478. https://doi.org/10.1115/1.3625863 doi: 10.1115/1.3625863
|
| [33] |
M. Alam, K. H. Khalid, Analysis of $\mathtt{q}$-fractional coupled implicit systems involving the nonlocal Riemann–Liouville and Erdélyi-Kober $\mathtt{q}$-fractional integral conditions, Math. Meth. Appl. Sci., 46 (2023), 12711–12734. https://doi.org/10.1002/mma.9208 doi: 10.1002/mma.9208
|
| [34] |
L. Hu, Y. Han, S. Zhang, On the existence of coupled fractional Jerk equations with multi-point boundary conditions, Axioms, 10 (2021), 103. https://doi.org/10.3390/axioms10020103 doi: 10.3390/axioms10020103
|
| [35] |
R. Majeed, B. Zhang, M. Alam, Fractional Langevin coupled system with Stieltjes integral conditions, Mathematics, 11 (2023), 2278. https://doi.org/10.3390/math11102278 doi: 10.3390/math11102278
|
| [36] | A. Zada, K. H. Khalid, $\mathtt{q}$-Caputo fractional implicit jerk differential equation having Erdélyi-Kober $\mathtt{q}$-fractional integral conditions, 2025. In press. |
| [37] | P. M. Rajković, S. D. Marinkovic, M. S. Stankovic, On $\mathtt{q}$-analogue of Caputo derivatives and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359–373. |
| [38] | M. H. Annaby, Z. S. Mansour, $\mathtt{q}$-fractional calculus and equations, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-30898-7 |
| [39] | L. Galué, Generalized Erdélyi-Kober fractional $\mathtt{q}$-integral operator, Kuwait J. Sci. Eng., 36 (2009), 21–34. |
| [40] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carapathian J. Math., 26 (2010), 103–107. |