The dynamic parallel magnetic resonance imaging (MRI) reconstruction presents additional challenges due to the multi-coil acquisition process and an increase in data dimensions, which lead to a more ill-posed inverse problem compared to single coil dynamic MRI. Relevant optimization strategies usually involve solving the model after convex relaxation, which often leads to suboptimal solutions that either overshrink important signals or fail to adequately promote low-rankness and sparsity. In this paper, we propose a dynamic parallel MRI reconstruction model based on weighted nuclear norm and $ L_{1} $ norm regularization in the framework of low-rank plus sparse (L+S) decomposition. The introduced weighted nuclear norm imposes nonuniform penalties on singular values and has a more flexible approximation to a low-rank property. To solve the resulting non-convex optimization problem, we employ the alternating direction method of multipliers (ADMM) based on variable splitting. The experimental results on multi-coil dynamic datasets show that this method provides a higher reconstruction quality than the traditional convex method.
Citation: Lei Xue, Benxin Zhang, Jianqun Yang. Dynamic parallel MRI reconstruction via weighted nuclear norm plus sparse decomposition model[J]. Electronic Research Archive, 2025, 33(7): 4241-4258. doi: 10.3934/era.2025192
The dynamic parallel magnetic resonance imaging (MRI) reconstruction presents additional challenges due to the multi-coil acquisition process and an increase in data dimensions, which lead to a more ill-posed inverse problem compared to single coil dynamic MRI. Relevant optimization strategies usually involve solving the model after convex relaxation, which often leads to suboptimal solutions that either overshrink important signals or fail to adequately promote low-rankness and sparsity. In this paper, we propose a dynamic parallel MRI reconstruction model based on weighted nuclear norm and $ L_{1} $ norm regularization in the framework of low-rank plus sparse (L+S) decomposition. The introduced weighted nuclear norm imposes nonuniform penalties on singular values and has a more flexible approximation to a low-rank property. To solve the resulting non-convex optimization problem, we employ the alternating direction method of multipliers (ADMM) based on variable splitting. The experimental results on multi-coil dynamic datasets show that this method provides a higher reconstruction quality than the traditional convex method.
| [1] |
E. J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52 (2006), 489–509. https://doi.org/10.1109/TIT.2005.862083 doi: 10.1109/TIT.2005.862083
|
| [2] |
M. Lustig, D. Donoho, J. M. Santos, J. M. Pauly, Compressed sensing MRI, IEEE Signal Process. Mag., 25 (2008), 72–82. https://doi.org/10.1109/MSP.2007.914728 doi: 10.1109/MSP.2007.914728
|
| [3] |
E. J. Candès, B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), 717–772. https://doi.org/10.1007/s10208-009-9045-5 doi: 10.1007/s10208-009-9045-5
|
| [4] |
H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, J. C. Ye, k-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI, Magn. Reson. Med., 61 (2009), 103–116. https://doi.org/10.1002/mrm.21757 doi: 10.1002/mrm.21757
|
| [5] |
R. Otazo, D. Kim, L. Axel, D. K. Sodickson, Combination of compressed sensing and parallel imaging for highly accelerated first-Pass cardiac perfusion MRI, Magn. Reson. Med., 64 (2010), 767–776. https://doi.org/10.1002/mrm.22463 doi: 10.1002/mrm.22463
|
| [6] |
E. J. Candès, M. B. Wakin, An introduction tocompressive sampling, IEEE Signal Process. Mag., 25 (2008), 21–30. https://doi.org/10.1109/MSP.2007.914731 doi: 10.1109/MSP.2007.914731
|
| [7] |
D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52 (2006), 1289–1306. https://doi.org/10.1109/TIT.2006.871582 doi: 10.1109/TIT.2006.871582
|
| [8] |
E. J. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysisl, J. ACM, 58 (2011), 1–37. https://doi.org/10.1145/1970392.1970395 doi: 10.1145/1970392.1970395
|
| [9] | B. R. Trémoulhéac, Low-Rank and Sparse Reconstruction in Dynamic Magnetic Resonance Imaging via Proximal Splitting Methods, PhD theis, University College London, 2015. |
| [10] | D. B. Zhang, Y. Hu, P. Ye, X. Li, X. He, Matrix completion by truncated nuclear norm regularization, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, (2012), 3414–3421. https://doi.org/10.1109/CVPR.2012.6247927 |
| [11] |
S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, Weighted nuclear norm minimization and its applications to low level vision, Int. J. Comput. Vision, 121 (2017), 183–208. https://doi.org/10.1007/s11263-016-0930-5 doi: 10.1007/s11263-016-0930-5
|
| [12] |
T. Ince, A. Nacaroglu, N. Watsuji, Nonconvex compressed sensing with partially known signal support, Signal Process., 93 (2013), 344–348. https://doi.org/10.1016/j.sigpro.2012.07.011 doi: 10.1016/j.sigpro.2012.07.011
|
| [13] | C. Lu, J. Tang, S. Yan, Z. Lin, Generalized nonconvex nonsmooth low-rank minimization, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 4130–4137. |
| [14] |
F. Shi, J. Cheng, L. Wang, P. Yap, D. Shen, LRTV: MR image super-resolution with low-rank and total variation regularizations, IEEE Trans. Med. Imaging, 34 (2015), 2456–2466. https://doi.org/10.1109/TMI.2015.2437894 doi: 10.1109/TMI.2015.2437894
|
| [15] |
W. He, H. Zhang, L. Zhang, H. Shen, Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration, IEEE Trans. Geosci. Remote Sens., 54 (2015), 178–188. https://doi.org/10.1109/TGRS.2015.2452812 doi: 10.1109/TGRS.2015.2452812
|
| [16] |
J. Peng, Y. Wang, H. Zhang, J. Wang, D. Meng, Exact decomposition of joint low rankness and local smoothness plus sparse matrices, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2022), 5766–5781. https://doi.org/10.1109/TPAMI.2022.3204203 doi: 10.1109/TPAMI.2022.3204203
|
| [17] |
J. Peng, H. Wang, X. Cao, X. Jia, H. Zhang, D. Meng, Stable local-smooth principal component pursuit, SIAM J. Imaging Sci., 17 (2024), 1182–1205. https://doi.org/10.1137/23M1580164 doi: 10.1137/23M1580164
|
| [18] |
Z. Hu, C. Zhao, X. Zhao, L. Kong, J. Yang, X. Wang, et al., Joint reconstruction framework of compressed sensing and nonlinear parallel imaging for dynamic cardiac magnetic resonance imaging, BMC Med. Imaging, 21 (2021). https://doi.org/10.1186/s12880-021-00685-2 doi: 10.1186/s12880-021-00685-2
|
| [19] |
D. K. Sodickson, W. J. Manning, Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays, Magn. Reson. Med., 38 (1997), 591–603. https://doi.org/10.1002/mrm.1910380414 doi: 10.1002/mrm.1910380414
|
| [20] |
M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, et al., Generalized autocalibrating partially parallel acquisitions (GRAPPA), Magn. Reson. Med., 47 (2002), 1202–1210. https://doi.org/10.1002/mrm.10171 doi: 10.1002/mrm.10171
|
| [21] |
K. P. Pruessmann, M. Weiger, M. B. Scheidegger, P. Boesiger, SENSE: Sensitivity encoding for fast MRI, Magn. Reson. Med., 42 (1999), 952–962. https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
|
| [22] |
C. Y. Lin, J. A. Fessler, Efficient dynamic parallel MRI reconstruction for the low-rank plus sparse model, IEEE Trans. Comput. Imaging, 39 (2020), 17–26. https://doi.org/10.1109/TCI.2018.2882089 doi: 10.1109/TCI.2018.2882089
|
| [23] |
R. Otazo, E. Candès, D. K. Sodickson, Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components, Magn. Reson. Med., 73 (2015), 1125–1136. https://doi.org/10.1002/mrm.25240 doi: 10.1002/mrm.25240
|
| [24] | B. Gu, D. Wang, Z. Huo, H. Huang, Inexact proximal gradient methods for non-convex and non-smooth optimization, in Proceedings of the AAAI Conference on Artificial Intelligence, (2018), 3093–3100. https://doi.org/10.1609/aaai.v32i1.11802 |
| [25] | Z. Lin, M. Chen, Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, preprint, arXiv: 1009.5055. https://doi.org/10.48550/arXiv.1009.5055 |
| [26] |
S. Xu, J. Zhang, L. Bo, H. Li, H. Zhang, Z. Zhong, et al., Singular vector sparse reconstruction for image compression, Comput. Electr. Eng., 91 (2021), 107069. https://doi.org/10.1016/j.compeleceng.2021.107069 doi: 10.1016/j.compeleceng.2021.107069
|
| [27] |
Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang, L. Zhang, Weighted schatten p-norm minimization for image denoising and background subtraction, IEEE Trans. Image Process., 250 (2016), 4842–4857. https://doi.org/10.1109/TIP.2016.2599290 doi: 10.1109/TIP.2016.2599290
|
| [28] |
M. Chen, Q. Wang, S. Chen, X. Li, Capped $l_{1}$-norm sparse representation method for graph clustering, IEEE Access, 7 (2019), 54464–54471. https://doi.org/10.1109/ACCESS.2019.2912773 doi: 10.1109/ACCESS.2019.2912773
|
| [29] |
J. Fan, R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Stat. Assoc., 96 (2001), 1348–1360. https://doi.org/10.1198/016214501753382273 doi: 10.1198/016214501753382273
|
| [30] |
J. Trzasko, A. Manduca, Highly undersampled magnetic resonance image reconstruction via homotopic $L_{0}$-minimization, IEEE Trans. Med. Imaging, 28 (2009), 106–121. https://doi.org/10.1109/TMI.2008.927346 doi: 10.1109/TMI.2008.927346
|
| [31] | Michigan Image Reconstruction Toolbox (MIRT), 2018. Available from: http://web.eecs.umich.edu/fessler/code. |
| [32] |
M. I. Grivich, D. P. Jackson, The magnetic field of current-carrying polygons: An application of vector field rotations, Am. J. Phys., 68 (2000), 469–474. https://doi.org/10.1119/1.19461 doi: 10.1119/1.19461
|
| [33] |
R. Otazo, E. Candès, D. K. Sodickson, Low rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components, Magn. Reson. Med., 73 (2015), 1125–1136. https://doi.org/10.1002/mrm.25240 doi: 10.1002/mrm.25240
|
| [34] |
W. Huang, Z. Ke, Z. X. Cui, J. Cheng, Z. Qiu, S. Jia, et al., Deep low-rank plus sparse network for dynamic MR imaging, Med. Image Anal., 73 (2021), 102190. https://doi.org/10.1016/j.media.2021.102190 doi: 10.1016/j.media.2021.102190
|