Research article

Dynamics of stochastic SIQS model based on nonlinear incidence: disease extinction and stationary distribution under degenerate diffusion

  • Published: 21 July 2025
  • This paper investigated the dynamical behaviors of the SIQS (susceptible, infected, isolated, and again susceptible) infectious disease model with nonlinear incidence rate and degenerate diffusion in a stochastic environment. By introducing nonlinear contagion rate, the model was able to more realistically reflect the complexity of real-world disease transmission, including the effects of social behavior, medical resource constraints, and public health interventions. It was proved that the infectious disease will be extinct when $ R_0^s < 1 $. Furthermore, by utilizing Markov semigroup theory, we obtained that there existed stationary distribution for the system when $ R_0^s > 1 $. Numerical simulations were conducted by introducing three different forms of nonlinear incidence rates (standard incidence, non-monotonic incidence, Beddington-DeAngelis incidence) to verify our results.

    Citation: Shuantu He, Zhongyi Xiang. Dynamics of stochastic SIQS model based on nonlinear incidence: disease extinction and stationary distribution under degenerate diffusion[J]. Electronic Research Archive, 2025, 33(7): 4259-4283. doi: 10.3934/era.2025193

    Related Papers:

  • This paper investigated the dynamical behaviors of the SIQS (susceptible, infected, isolated, and again susceptible) infectious disease model with nonlinear incidence rate and degenerate diffusion in a stochastic environment. By introducing nonlinear contagion rate, the model was able to more realistically reflect the complexity of real-world disease transmission, including the effects of social behavior, medical resource constraints, and public health interventions. It was proved that the infectious disease will be extinct when $ R_0^s < 1 $. Furthermore, by utilizing Markov semigroup theory, we obtained that there existed stationary distribution for the system when $ R_0^s > 1 $. Numerical simulations were conducted by introducing three different forms of nonlinear incidence rates (standard incidence, non-monotonic incidence, Beddington-DeAngelis incidence) to verify our results.



    加载中


    [1] A. Lahrouz, A. Settati, Asymptotic properties of switching diffusion epidemic model with varying population size, Appl. Math. Comput., 219 (2013), 11134–11148. https://doi.org/10.1016/j.amc.2013.05.019 doi: 10.1016/j.amc.2013.05.019
    [2] W. O. Kermack, A. G. McKendrick, A contributions to the mathematical theory of epidemics, Proc. R. Soc. A., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [3] O. Esen, E. Fernández-Saiz, C. Sardón, M. Zając, A generalization of a SIS epidemic model with fluctuations, Math. Methods Appl. Sci., 45 (2022), 3718–3731. https://doi.org/10.1002/mma.8013 doi: 10.1002/mma.8013
    [4] Y. Tan, Y. Cai, X. Wang, Z. Peng, K. Wang, R. Yao, et al., Stochastic dynamics of an SIS epidemiological model with media coverage, Math. Comput. Simul., 204 (2023), 1–27. https://doi.org/10.1016/j.matcom.2022.08.001 doi: 10.1016/j.matcom.2022.08.001
    [5] J. Jiao, S. Cai, L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Phys. A, 449 (2016), 145–159. https://doi.org/10.1016/j.physa.2015.10.055 doi: 10.1016/j.physa.2015.10.055
    [6] I. Cooper, A. Mondal, C. G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different communities, Chaos Solitons Fractals, 139 (2020), 110057. https://doi.org/10.1016/j.chaos.2020.110057 doi: 10.1016/j.chaos.2020.110057
    [7] C. Sun, Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination, Appl. Math. Model., 34 (2010), 2685–2697. https://doi.org/10.1016/j.apm.2009.12.005 doi: 10.1016/j.apm.2009.12.005
    [8] S. Annas, M. I. Pratama, M. Rifandi, W. Sanusi, S. Side, Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia, Chaos Solitons Fractals, 139 (2020), 110072. https://doi.org/10.1016/j.chaos.2020.110072 doi: 10.1016/j.chaos.2020.110072
    [9] V. Piccirillo, Nonlinear control of infection spread based on a deterministic SEIR model, Chaos Solitons Fractals, 149 (2021), 111051. https://doi.org/10.1016/j.chaos.2021.111051 doi: 10.1016/j.chaos.2021.111051
    [10] X. B. Zhang, H. F. Huo, H. Xiang, X. Y. Meng, Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence, Appl. Math. Comput., 243 (2014), 546–558. https://doi.org/10.1016/j.amc.2014.05.136 doi: 10.1016/j.amc.2014.05.136
    [11] F. Wei, F. Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Phys. A, 453 (2016), 99–107. https://doi.org/10.1016/j.physa.2016.01.059 doi: 10.1016/j.physa.2016.01.059
    [12] V. Verma, Stability analysis of SIQS mathematical model for pandemic coronavirus spread, J. Appl. Nonlinear Dyn., 11 (2022), 591–603. https://doi.org/10.5890/jand.2022.09.006 doi: 10.5890/jand.2022.09.006
    [13] H. Herbert, Z. Ma, S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180 (2002), 141–160. https://doi.org/10.1016/s0025-5564(02)00111-6 doi: 10.1016/s0025-5564(02)00111-6
    [14] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/s0036144500371907 doi: 10.1137/s0036144500371907
    [15] Q. Yang, D. Jiang, N. Shi, C. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248–271. https://doi.org/10.1016/j.jmaa.2011.11.072 doi: 10.1016/j.jmaa.2011.11.072
    [16] F. Wei, Q. Fu, Hopf bifurcation and stability for predator–prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Appl. Math. Model., 40 (2016), 126–134. https://doi.org/10.1016/j.apm.2015.04.042 doi: 10.1016/j.apm.2015.04.042
    [17] J. Liu, F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Phys. A, 464 (2016), 241–250. https://doi.org/10.1016/j.physa.2016.06.120 doi: 10.1016/j.physa.2016.06.120
    [18] F. Wei, J. Liu, Long-time behavior of a stochastic epidemic model with varying population size, Phys. A, 470 (2017), 146–153. https://doi.org/10.1016/j.physa.2016.11.031 doi: 10.1016/j.physa.2016.11.031
    [19] L. Chen, F. Wei, Persistence and distribution of a stochastic susceptible–infected-removed epidemic model with varying population size, Phys. A, 483 (2017), 386–397. https://doi.org/10.1016/j.physa.2017.04.114 doi: 10.1016/j.physa.2017.04.114
    [20] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [21] A. Omame, M. Abbas, A. Din, Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2, Math. Comput. Simul., 204 (2023), 302–336. https://doi.org/10.1016/j.matcom.2022.08.012 doi: 10.1016/j.matcom.2022.08.012
    [22] R. Rifhat, A. Muhammadhaji, Z. Teng, Asymptotic properties of a stochastic SIRS epidemic model with nonlinear incidence and varying population sizes, Dyna. Syst., 35 (2020), 56–80. https://doi.org/10.1080/14689367.2019.1620689 doi: 10.1080/14689367.2019.1620689
    [23] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamical behavior of a stochastic model of gene expression with distributed delay and degenerate diffusion, Stoch. Anal. Appl., 36 (2018), 584–599. https://doi.org/10.1080/07362994.2018.1434003 doi: 10.1080/07362994.2018.1434003
    [24] T. Kang, Q. Zhang, Q. Wang, Nonlinear adaptive control of avian influenza model with slaughter, educational campaigns and treatment, Electron. Res. Arch., 31 (2023), 4346–4361. https://doi.org/10.3934/era.2023222 doi: 10.3934/era.2023222
    [25] L. Wang, C. Gao, R. Rifhat, K. Wang, Z. Teng, Stationary distribution and bifurcation analysis for a stochastic SIS model with nonlinear incidence and degenerate diffusion, Chaos Solitons Fractals, 182 (2024), 114872. https://doi.org/10.1016/j.chaos.2024.114872 doi: 10.1016/j.chaos.2024.114872
    [26] J. R. Beddington, R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463–465. https://doi.org/10.1126/science.197.4302.463 doi: 10.1126/science.197.4302.463
    [27] A. Settati, A. Lahrouz, Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 244 (2014), 235–243. https://doi.org/10.1016/j.amc.2014.07.012 doi: 10.1016/j.amc.2014.07.012
    [28] C. Tan, W. Zhang, On observability and detectability of continuous-time stochastic Markov jump systems, J. Syst. Sci. Complexity, 28 (2015), 830–847. https://doi.org/10.1007/s11424-015-2253-y doi: 10.1007/s11424-015-2253-y
    [29] Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502. https://doi.org/10.1016/j.jde.2015.08.024 doi: 10.1016/j.jde.2015.08.024
    [30] M. Liu, C. Bai, Y. Jin, Population dynamical behavior of a two-predator one-prey stochastic model with time delay, Discrete Contin. Dyn. Syst., 37 (2017), 2513–2538. https://doi.org/10.3934/dcds.2017108 doi: 10.3934/dcds.2017108
    [31] Y. Tian, J. Zhu, J. Zheng, K. Sun, Modeling and analysis of a prey-predator system with prey habitat selection in an environment subject to stochastic disturbances, Electron. Res. Arch., 33 (2025), 744–767. https://doi.org/10.3934/era.2025034 doi: 10.3934/era.2025034
    [32] B. Wen, R. Rifhat, Z. Teng, The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence, Phys. A, 524 (2019), 258–271. https://doi.org/10.1016/j.physa.2019.04.049 doi: 10.1016/j.physa.2019.04.049
    [33] Y. Lin, L. Wang, X. Dong, Long-time behavior of a regime-switching SIRS epidemic model with degenerate diffusion, Phys. A, 529 (2019), 121551. https://doi.org/10.1016/j.physa.2019.121551 doi: 10.1016/j.physa.2019.121551
    [34] X. Mao, Stochastic Differential Equations and Applications, Woodhead Publishing, Cambridge, 2007.
    [35] R. Rudnicki, K. Pichór, Influence of stochastic perturation on prey-predator system, Math. Biosci., 206 (2007), 108–119. https://doi.org/10.1016/j.mbs.2006.03.006 doi: 10.1016/j.mbs.2006.03.006
    [36] R. Rudnicki, Long-time behavior of a stochastic prey-predator model, Stochastic Proc. Appl., 108 (2003), 93–107. https://doi.org/10.1016/s0304-4149(03)00090-5 doi: 10.1016/s0304-4149(03)00090-5
    [37] R. D. Bell, The Malliavin Calculus, Courier Corporation, 2012.
    [38] M. Carletti, K. Burrage, P. Burrage, Numerical simulation of stochastic ordinary differential equations in biomathematical modelling, Math. Comput. Simul., 64 (2004), 271–277. https://doi.org/10.1016/j.matcom.2003.09.022 doi: 10.1016/j.matcom.2003.09.022
    [39] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/s0036144500378302 doi: 10.1137/s0036144500378302
    [40] B. Liu, B. Kang, F. Tao, G. Hu, Modelling the effects of pest control with development of pesticide resistance, Acta. Math. Appl. Sin., 37 (2021), 109–125. https://doi.org/10.1007/s10255-021-0988-x doi: 10.1007/s10255-021-0988-x
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(564) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog