Research article

Inverse problem for time dependent coefficients in the higher order pseudo-parabolic equation

  • Published: 18 July 2025
  • In this paper, we considered an inverse problem of recovering the time dependent potential and force coefficients in the third order pseudoparabolic equation from nonlocal integral observations. Existence and uniqueness of the solution are proved by means of the contraction principle on a small time interval. The stability results for the inverse problem is presented. The unique solvability theorem for this inverse problem is proved. However, since the governing equation is yet ill-posed (very slight errors in the integral input may cause relatively significant errors in the output potential and heat source terms), we need to regularize the solution. Therefore, to get a stable solution, a regularized cost function is to be minimized for retrieval of the unknown terms. The third order pseudoparabolic problem is discretized using the cubic B-spline (CB-spline) collocation technique and reshaped as nonlinear least-squares optimization of the Tikhonov regularization function. This is numerically solved by means of the MATLAB subroutine $ lsqnonlin $ tool. Both analytical and perturbed data are inverted. Numerical outcomes for two benchmark test examples are reported and discussed. In addition, the von Neumann stability analysis for the proposed numerical approach has also been discussed.

    Citation: M. J. Huntul, I. Tekin. Inverse problem for time dependent coefficients in the higher order pseudo-parabolic equation[J]. Mathematical Modelling and Control, 2025, 5(3): 236-257. doi: 10.3934/mmc.2025017

    Related Papers:

  • In this paper, we considered an inverse problem of recovering the time dependent potential and force coefficients in the third order pseudoparabolic equation from nonlocal integral observations. Existence and uniqueness of the solution are proved by means of the contraction principle on a small time interval. The stability results for the inverse problem is presented. The unique solvability theorem for this inverse problem is proved. However, since the governing equation is yet ill-posed (very slight errors in the integral input may cause relatively significant errors in the output potential and heat source terms), we need to regularize the solution. Therefore, to get a stable solution, a regularized cost function is to be minimized for retrieval of the unknown terms. The third order pseudoparabolic problem is discretized using the cubic B-spline (CB-spline) collocation technique and reshaped as nonlinear least-squares optimization of the Tikhonov regularization function. This is numerically solved by means of the MATLAB subroutine $ lsqnonlin $ tool. Both analytical and perturbed data are inverted. Numerical outcomes for two benchmark test examples are reported and discussed. In addition, the von Neumann stability analysis for the proposed numerical approach has also been discussed.



    加载中


    [1] G. I. Barenblatt, I. P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 24 (1960), 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6 doi: 10.1016/0021-8928(60)90107-6
    [2] T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1–26. https://doi.org/10.1007/BF00250690 doi: 10.1007/BF00250690
    [3] D. W. Taylor, Research on consolidation of clays, Massachusetts Institute Technology Cambridge, 82 (1942).
    [4] S. L. Sobolev, Some new problems in mathematical physics, Izv. Akad. Nauk. SSSR Ser. Mat., 18 (1954), 3–50.
    [5] E. A. Milne, The diffusion of imprisoned radiation through a gas, J. Lond. Math. Soc., 1 (1926), 40–51. https://doi.org/10.1112/jlms/s1-1.1.40 doi: 10.1112/jlms/s1-1.1.40
    [6] P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614–627. https://doi.org/10.1007/BF01594969 doi: 10.1007/BF01594969
    [7] A. Hussain, H. Ali, F. Zaman, N. Abbas, New closed form solutions of some nonlinear pseudo-parabolic models via a new extended direct algebraic method, Int. J. Math. Comput. Eng., 2 (2023), 35–58. https://doi.org/10.2478/ijmce-2024-0004 doi: 10.2478/ijmce-2024-0004
    [8] N. Abbas, A. Hussain, T. F. Ibrahim, M. Y. Juma, F. M. O. Birkea, Conservation laws, exact solutions and stability analysis for time-fractional extended quantum Zakharov–Kuznetsov equation, Opt. Quant. Electron., 56 (2024), 809. https://doi.org/10.1007/s11082-024-06595-1 doi: 10.1007/s11082-024-06595-1
    [9] M. Usman, A. Hussain, F. D. Zaman, I. Khan, S. M. Eldin, Reciprocal Bäcklund transformations and travelling wave structures of some nonlinear pseudo-parabolic equations. Partial Differ. Equ. Appl. Math., 7 (2023), 100490. https://doi.org/10.1016/j.padiff.2023.100490 doi: 10.1016/j.padiff.2023.100490
    [10] A. Hussain, N. Abbas, T. F. Ibrahim, F. M. O. Birkea, B. R. Al-Sinan, Symmetry analysis, conservation laws and exact soliton solutions for the (n+1)-dimensional modified Zakharov–Kuznetsov equation in plasmas with magnetic fields, Opt. Quant. Electron., 56 (2024), 1310. https://doi.org/10.1007/s11082-024-07211-y doi: 10.1007/s11082-024-07211-y
    [11] Y. Guan, N. Abbas, A. Hussain, S. Fatima, S. Muhammad, Sensitive visualization, traveling wave structures and nonlinear self-adjointness of Cahn–Allen equation, Opt. Quant. Electron., 56 (2024), 1–19. https://doi.org/10.1007/s11082-024-06729-5 doi: 10.1007/s11082-024-06729-5
    [12] A. Hussain, T. F. Ibrahim, F. M. O. Birkea, A. M. Alotaibi, B. R. Al-Sinan, H. Mukalazi, Exact solutions for the Cahn–Hilliard equation in terms of Weierstrass-elliptic and Jacobi-elliptic functions, Sci. Rep., 14 (2024), 13100. https://doi.org/10.1038/s41598-024-62961-9 doi: 10.1038/s41598-024-62961-9
    [13] A. Hussain, T. F. Ibrahim, F. M. O. Birkea, B. R. Al-Sinan, A. M. Alotaibi, Abundant analytical solutions and diverse solitonic patterns for the complex Ginzburg–Landau equation, Chaos, Soliton. Fract., 185 (2024), 115071. https://doi.org/10.1016/j.chaos.2024.115071 doi: 10.1016/j.chaos.2024.115071
    [14] A. Hussain, H. Ali, M. Usman, F. D. Zaman, C. Park, Some new families of exact solitary wave solutions for pseudo‐parabolic type nonlinear models, J. Math., 2024 (2024), 1–19. https://doi.org/10.1155/2024/5762147 doi: 10.1155/2024/5762147
    [15] A. Hussain, F. D. Zaman, H. Ali, Dynamic nature of analytical soliton solutions of the nonlinear ZKBBM and GZKBBM equations, Partial Differ. Equ. Appl. Math., 10 (2024), 100670. https://doi.org/10.1016/j.padiff.2024.100670 doi: 10.1016/j.padiff.2024.100670
    [16] J. R. Cannon, Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. Anal., 5 (1968), 275–286. https://doi.org/10.1137/0705024 doi: 10.1137/0705024
    [17] J. R. Cannon, D. R. Dunninger, Determination of an unknown forcing function in a hyperbolic equation from overspecified data, Ann. Mat. Pura Appl., 85 (1970), 49–62. https://doi.org/10.1007/BF02413529 doi: 10.1007/BF02413529
    [18] J. R. Cannon, R. E. Ewing, Determination of a source term in a linear parabolic partial differential equation, Z. Angew. Math. Phys., 27 (1976), 393–401. https://doi.org/10.1007/BF01590512 doi: 10.1007/BF01590512
    [19] W. Rundell, D. L. Colton, Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data, Appl. Anal., 10 (1980), 231–242. https://doi.org/10.1080/00036818008839304 doi: 10.1080/00036818008839304
    [20] A. Asanov, E. R. Atmanov, An inverse problem for a pseudoparabolic operator equation, J. Inverse Ill-Posed Probl., 2 (1994), 1–14. https://doi.org/10.1515/jiip.1994.2.1.1 doi: 10.1515/jiip.1994.2.1.1
    [21] I. Elshafiey, L. Udpa, S. S. Udpa, Solution of inverse problems in electromagnetics using Hopfield neural networks, IEEE Trans. Magn., 31 (1995), 852–861. https://doi.org/10.1109/20.364586 doi: 10.1109/20.364586
    [22] M. Yaman, Ö. F. Gözükizil, Asymptotic behaviour of the solutions of inverse problems for pseudo-parabolic equations, Appl. Math. Comput., 154 (2004), 69–74. https://doi.org/10.1016/S0096-3003(03)00691-X doi: 10.1016/S0096-3003(03)00691-X
    [23] K. Khonatbek, Inverse problem with integral overdetermination for system of equations of Kelvin-Voight fluids, Adv. Mater. Res., 705 (2013), 15–20. https://doi.org/10.4028/www.scientific.net/AMR.705.15 doi: 10.4028/www.scientific.net/AMR.705.15
    [24] A. S. Lyubanova, A. Tani, An inverse problem for pseudoparabolic equation of filtration: the existence, uniqueness and regularity, Appl. Anal., 90 (2011), 1557–1571. https://doi.org/10.1080/00036811.2010.530258 doi: 10.1080/00036811.2010.530258
    [25] A. S. Lyubanova, Inverse problem for a pseudoparabolic equation with integral overdetermination conditions, Diff. Equat., 50 (2014), 502–512. https://doi.org/10.1134/S0012266114040089 doi: 10.1134/S0012266114040089
    [26] U. U. Abylkairov, K. Khompysh, An inverse problem of identifying the coefficient in Kelvin-Voight equations, Appl. Math. Sci., 9 (2015), 5079–5088. https://doi.org/10.12988/ams.2015.57464 doi: 10.12988/ams.2015.57464
    [27] M. K. Beshtokov, Differential and difference boundary value problem for loaded third-order pseudo-parabolic differential equations and difference methods for their numerical solution, Comput. Math. Math. Phys., 57 (2017), 1973–1993. https://doi.org/10.1134/S0965542517120089 doi: 10.1134/S0965542517120089
    [28] A. S. Lyubanova, A. V. Velisevich, Inverse problems for the stationary and pseudoparabolic equations of diffusion, Appl. Anal., 98 (2019), 1997–2010. https://doi.org/10.1080/00036811.2018.1442001 doi: 10.1080/00036811.2018.1442001
    [29] I. Baglan, T. Canel, An inverse coefficient problem for quasilinear pseudo-parabolic of heat conduction of Poly (methyl methacrylate)(PMMA), Turk. J. Sci., 5 (2020), 199–207.
    [30] I. Baglan, F. Kanca, Weak generalized and numerical solution for a quasilinear pseudo-parabolic equation with nonlocal boundary condition, Adv. Differ. Equ., 2014 (2014), 1–22. https://doi.org/10.1186/1687-1847-2014-277 doi: 10.1186/1687-1847-2014-277
    [31] D. Colton, On the analytic theory of pseudoparabolic equations, Quart. J. Math., 23 (1972), 179–192. https://doi.org/10.1093/qmath/23.2.179 doi: 10.1093/qmath/23.2.179
    [32] B. D. Coleman, R. J. Duffin, J. M. Victor, Instability, uniqueness, and nonexistence theorems for the equation $ u_{t} = u_xx-u_xtx$ on a strip, Arch. Rational Mech. Anal., 19 (1965), 100–116. https://doi.org/10.1007/BF00282277 doi: 10.1007/BF00282277
    [33] H. Halilov, On the mixed problem for quasilinear pseudoparabolic equation, Appl. Anal., 75 (2000), 61–71. https://doi.org/10.1080/00036810008840835 doi: 10.1080/00036810008840835
    [34] W. Rundell, I. N. Sneddon, The solution of initial-boundary value problems for pseudoparabolic partial differential equations, Proc. Roy. Soc. Edinb. A., 74 (1976), 311–326. https://doi.org/10.1017/S0308210500016747 doi: 10.1017/S0308210500016747
    [35] L. I. Rubinshtein, On the question of the heat propagation process in heterogeneous media, Izv. Akad. Nauk SSSR Ser. Geograf. Geofiz., 12 (1948), 27–45.
    [36] T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl., 45 (1974), 23–31. https://doi.org/10.1016/0022-247X(74)90116-4 doi: 10.1016/0022-247X(74)90116-4
    [37] Y. T. Mehraliyev, G. K. Shafiyeva, On an inverse boundary-value problem for a pseudoparabolic third-order equation with integral condition of the first kind, J. Math. Sci., 204 (2015), 343–350. https://doi.org/10.1007/s10958-014-2206-3 doi: 10.1007/s10958-014-2206-3
    [38] K. Khompysh, Inverse problem for 1D pseudo-parabolic equation, In: T. Kalmenov, E. Nursultanov, M. Ruzhansky, M. Sadybekov, Functional analysis in interdisciplinary applications, FAIA 2017. Springer Proceedings in Mathematics Statistics, Vol 216, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-67053-9_36
    [39] A. T. Ramazanova, Y. T. Mehraliyev, S. I. Allahverdieva, On an inverse boundary value problem with non-local integral terms condition for the pseudo-parabolic equation of the fourth order, In: Differential equations and their applications in mathematical modelling, Saransk, 2019,101–103.
    [40] D. Serikbaev, N. Tokmagambetov, An inverse problem for the pseudo-parabolic equation for a Sturm-Liouville operator, News of the National Academy of Sciences of the Republic of Kazakhstan, 4 (2019), 122–128. https://doi.org/10.32014/2019.2518-1726.50 doi: 10.32014/2019.2518-1726.50
    [41] M. J. Huntul, N. Dhiman, M. Tamsir, Reconstructing an unknown potential term in the third-order pseudo-parabolic problem, Comput. Appl. Math., 40 (2021), 140. https://doi.org/10.1007/s40314-021-01532-4 doi: 10.1007/s40314-021-01532-4
    [42] M. J. Huntul, M. Tamsir, N. Dhiman, An inverse problem of identifying the time ‐dependent potential in a fourth‐order pseudo‐parabolic equation from additional condition, Numer. Methods Partial Differ. Equations, 39 (2023), 848–865. https://doi.org/10.1002/num.22778 doi: 10.1002/num.22778
    [43] M. J. Huntul, Determination of a time-dependent potential in the higher-order pseudo-hyperbolic problem, Inverse Probl. Sci. Eng., 29 (2021), 3006–3023. https://doi.org/10.1080/17415977.2021.1964496 doi: 10.1080/17415977.2021.1964496
    [44] Y. T. Mehraliyev, G. K. Shafiyeva, Determination of an unknown coefficient in the third order pseudoparabolic equation with non-self-adjoint boundary conditions, J. Appl. Math., 2014 (2014), 1–7. https://doi.org/10.1155/2014/358696 doi: 10.1155/2014/358696
    [45] Y. T. Mehraliyev, G. K. Shafiyeva, Inverse boundary value problem for the pseudoparabolic equation of the third order with periodic and integral conditions, Appl. Math. Sci., 8 (2014), 1145–1155. http://dx.doi.org/10.12988/ams.2014.4167 doi: 10.12988/ams.2014.4167
    [46] M. J. Huntul, I. Tekin, M. K. Iqbal, M. Abbas, An inverse problem of reconstructing the unknown coefficient in a third order time fractional pseudoparabolic equation, Ann. Univ. Craiova-Math. Comput. Sci. Ser., 51 (2024), 54–81. https://doi.org/10.52846/ami.v51i1.1744 doi: 10.52846/ami.v51i1.1744
    [47] M. J. Huntul, I. Tekin, , M. K. Iqbal, M. Abbas, An inverse problem of recovering the heat source coefficient in a fourth-order time-fractional pseudo-parabolic equation, J. Comput. Appl. Math., 442 (2024), 115712. https://doi.org/10.1016/j.cam.2023.115712 doi: 10.1016/j.cam.2023.115712
    [48] S. Aitzhanov, A. Isakhov, K. Zhalgassova, G. Ashurova, The coefficient inverse problem for a pseudoparabolic equation of the third order, J. Math. Mech. Comput. Sci., 119 (2023), 3–18. https://doi.org/10.26577/JMMCS2023v119i3a1 doi: 10.26577/JMMCS2023v119i3a1
    [49] J. R. Cannon, J. van der Hoek, The one phase Stefan problem subject to the specification of energy, J. Math. Anal. Appl., 86 (1982), 281–291. https://doi.org/10.1016/0022-247X(82)90270-0 doi: 10.1016/0022-247X(82)90270-0
    [50] J. R. Cannon, J. Vander Hoek, Diffusion subject to the specification of mass, J. Math. Anal. Appl., 115 (1986), 517–529. https://doi.org/10.1016/0022-247X(86)90012-0 doi: 10.1016/0022-247X(86)90012-0
    [51] D. Mugnolo, S. Nicaise, The heat equation under conditions on the moments in higher dimensions, Math. Nachr., 288 (2015), 295–308. https://doi.org/10.1002/mana.201300298 doi: 10.1002/mana.201300298
    [52] V.G. Romanov, Inverse problems of mathematical physics, VNU Science Press BV, Utrecht, Netherlands, 1987.
    [53] M. I. Ismailov, I. Tekin, Inverse coefficient problems for a first order hyperbolic system, Appl. Numer. Math., 106 (2016), 98–115. https://doi.org/10.1016/j.apnum.2016.02.008 doi: 10.1016/j.apnum.2016.02.008
    [54] I. Tekin, Reconstruction of a time-dependent potential in a pseudo-hyperbolic equation, UPB Sci. Bull.-Ser. A-Appl. Math. Phys., 81 (2019), 115–124.
    [55] G. D. Smith, Numerical solution of partial differential equations: finite difference methods, Oxford Applied Mathematics and Computing Science Series, 3 Eds., 1985.
    [56] N. Khalid, M. Abbas, M. K. Iqbal, D. Baleanu, A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions, Adv. Differ. Equ., 2020 (2020), 158. https://doi.org/10.1186/s13662-020-02616-x doi: 10.1186/s13662-020-02616-x
    [57] M. K. Iqbal, M. Abbas, T. Nazir, N. Ali, Application of new quintic polynomial B-spline approximation for numerical investigation of Kuramoto-Sivashinsky equation, Adv. Differ. Equ., 2020 (2020), 1–21. https://doi.org/10.1186/s13662-020-03007-y doi: 10.1186/s13662-020-03007-y
    [58] Mathworks Documentation Optimization Toolbox-Least Squares (Model Fitting) Algorithms, 2019. Available from: https://www.mathworks.com/help/toolbox/optim/ug/brnoybu.html.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(857) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog