We are concerned with the time growth of the highest-order energy of three-dimensional inhomogeneous incompressible isotropic elastodynamics. Utilizing Klainerman's generalized energy method, refined weighted estimates, and the Keel-Smith-Sogge estimate [J. Anal. Math., 87: 265-279, 2002], it is justified that the highest-order generalized energy is uniformly bounded for all time.
Citation: Xiufang Cui, Xianpeng Hu. Uniform bound of the highest-order energy for three dimensional inhomogeneous incompressible elastodynamics[J]. Communications in Analysis and Mechanics, 2025, 17(2): 429-461. doi: 10.3934/cam.2025018
We are concerned with the time growth of the highest-order energy of three-dimensional inhomogeneous incompressible isotropic elastodynamics. Utilizing Klainerman's generalized energy method, refined weighted estimates, and the Keel-Smith-Sogge estimate [J. Anal. Math., 87: 265-279, 2002], it is justified that the highest-order generalized energy is uniformly bounded for all time.
| [1] |
T. C. Sideris, B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750–788. https://doi.org/10.1002/cpa.20049 doi: 10.1002/cpa.20049
|
| [2] |
T. C. Sideris, B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics, Comm. Pure Appl. Math., 60 (2007), 1707–1730. https://doi.org/10.1002/cpa.20196 doi: 10.1002/cpa.20196
|
| [3] |
F. John, Blow-up for quasilinear wave equations in three spaces dimensions, Comm. Pure Appl. Math., 34 (1981), 29–51. https://doi.org/10.1002/cpa.3160340103 doi: 10.1002/cpa.3160340103
|
| [4] | A. S. Tahvildar-Zadeh, Relativistic and nonrelativistic elastodynamics with small shear strains, Ann. Inst. H. Poincaré Phys. Théor., 69 (1998), 275–307. |
| [5] |
F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbance, Comm. Pure Appl. Math., 41 (1988), 615–666. https://doi.org/10.1002/cpa.3160410507 doi: 10.1002/cpa.3160410507
|
| [6] |
S. Klainerman, T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math., 49 (1996), 307–321. https://doi.org/10.1002/(SICI)1097-0312(199603)49:3%3C307::AID-CPA4%3E3.0.CO;2-H doi: 10.1002/(SICI)1097-0312(199603)49:3%3C307::AID-CPA4%3E3.0.CO;2-H
|
| [7] |
T. C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math., 123 (1996), 323–342. https://doi.org/10.1007/s002220050030 doi: 10.1007/s002220050030
|
| [8] |
T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math., 151 (2000), 849–874. https://doi.org/10.2307/121050 doi: 10.2307/121050
|
| [9] |
R. Agemi, Global existence of nonlinear elastic waves, Invent. Math., 142 (2000), 225–250. https://doi.org/10.1007/s002220000084 doi: 10.1007/s002220000084
|
| [10] |
Z. Lei, T. C. Sideris, Y. Zhou, Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Amer. Math. Soc., 367 (2015), 8175–8197. https://doi.org/10.1090/tran/6294 doi: 10.1090/tran/6294
|
| [11] |
Z. Lei, Global well-posedness of incompressible elastodynamics in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2072–2106. https://doi.org/10.1002/cpa.21633 doi: 10.1002/cpa.21633
|
| [12] |
S. Alinhac, The null condition for quasilinear wave equations in two space dimensions Ⅰ, Invent. Math., 145 (2001), 597–618. https://doi.org/10.1007/s002220100165 doi: 10.1007/s002220100165
|
| [13] |
X. Wang, Global existence for the 2D incompressible isotropic elastodynamics for small initial data, Ann. Henri Poincaré., 18 (2017), 1213–1267. https://doi.org/10.1007/s00023-016-0538-x doi: 10.1007/s00023-016-0538-x
|
| [14] |
X. Cui, S. Yin, Global existence of inhomogeneous incompressible elastodynamics in three dimensions, SIAM J. Math. Anal., 50 (2018), 4721–4751. https://doi.org/10.1137/17M1143113 doi: 10.1137/17M1143113
|
| [15] |
Y. Cai, Uniform bound of the higest-order energy of the 2D incompressible elastodynamics, SIAM J. Math. Anal., 55 (2023), 5893–5918. https://doi.org/10.1137/22M1519894 doi: 10.1137/22M1519894
|
| [16] |
Z. Lei, F. Wang, Uniform bound of the highest energy for the three dimensional incompressible elastodynamics, Arch. Ration. Mech. Anal., 216 (2015), 593–622. https://doi.org/10.1007/s00205-014-0815-0 doi: 10.1007/s00205-014-0815-0
|
| [17] |
C. Wang, X. Yu, Global existence of null- form wave equations on small asymptotically Euclidean manifolds, J. Funct. Anal., 266 (2014), 5676–5708. https://doi.org/10.1016/j.jfa.2014.02.028 doi: 10.1016/j.jfa.2014.02.028
|
| [18] |
H. Hidano, C. Wang, K. Yokoyama, On almost global existence and local well posedness for some 3-D quas-ilinear wave equations, Adv. Differential Equations, 17 (2012), 267–306. https://doi.org/10.57262/ade/1355703087 doi: 10.57262/ade/1355703087
|
| [19] |
J. Metcalfe, C. Sogge, Long-time existence of quasilinear wave equations exterior to star-sharped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188–209. https://doi.org/10.1137/050627149 doi: 10.1137/050627149
|