This paper concerns the dynamics of a stochastic, hybrid delay, one-predator-two-prey model with harvesting and Lévy jumps in a polluted environment. Under some basic assumptions, sufficient conditions of stochastic persistence in the mean and extinction of each species are obtained, as well as the existence of optimal harvesting strategy (OHS). Our results show that both time delays and environmental noises affect the survival state of the species. Moreover, the accurate expressions for the optimal harvesting effort (OHE) and the maximum of expectation of sustainable yield (MESY) are given. Finally, some numerical simulations are provided to support our results.
Citation: Sheng Wang, Baoli Lei. Dynamics of a stochastic hybrid delay one-predator-two-prey model with harvesting and jumps in a polluted environment[J]. Mathematical Modelling and Control, 2025, 5(1): 85-102. doi: 10.3934/mmc.2025007
This paper concerns the dynamics of a stochastic, hybrid delay, one-predator-two-prey model with harvesting and Lévy jumps in a polluted environment. Under some basic assumptions, sufficient conditions of stochastic persistence in the mean and extinction of each species are obtained, as well as the existence of optimal harvesting strategy (OHS). Our results show that both time delays and environmental noises affect the survival state of the species. Moreover, the accurate expressions for the optimal harvesting effort (OHE) and the maximum of expectation of sustainable yield (MESY) are given. Finally, some numerical simulations are provided to support our results.
| [1] |
M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal., 28 (2018), 87–104. https://doi.org/10.1016/j.nahs.2017.10.004 doi: 10.1016/j.nahs.2017.10.004
|
| [2] |
G. Liu, X. Meng, Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching, Phys. A, 536 (2019), 120893. https://doi.org/10.1016/j.physa.2019.04.129 doi: 10.1016/j.physa.2019.04.129
|
| [3] |
N. Cao, X. L. Fu, Stationary distribution and extinction of a Lotka-Volterra model with distribute delay and nonlinear stochastic perturbations, Chaos Solitons Fract., 169 (2023), 113246. https://doi.org/10.1016/j.chaos.2023.113246 doi: 10.1016/j.chaos.2023.113246
|
| [4] | Y. Kuang, Delay differential equations: with applications in population dynamics, Academic Press, 1993. |
| [5] |
W. Zuo, D. Jiang, X. Sun, T. Hayat, A. Alsaedi, Long-time behaviors of a stochastic cooperative Lotka-Volterra system with distributed delay, Phys. A, 506 (2018), 542–559. https://doi.org/10.1016/j.physa.2018.03.071 doi: 10.1016/j.physa.2018.03.071
|
| [6] |
H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type II functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
|
| [7] |
S. Wang, G. Hu, T. Wei, On a three-species stochastic hybrid Lotka-Volterra system with distributed delay and Lévy noise, Filomat, 36 (2022), 4737–4750. https://doi.org/10.2298/FIL2214737W doi: 10.2298/FIL2214737W
|
| [8] |
Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. https://doi.org/10.1016/j.aml.2020.106756 doi: 10.1016/j.aml.2020.106756
|
| [9] |
Q. Zhang, D. Jiang, Z. Liu, D. O'Regan, Asymptotic behavior of a three species eco-epidemiological model perturbed by white noise, J. Math. Anal. Appl., 433 (2016), 121–148. https://doi.org/10.1016/j.jmaa.2015.07.025 doi: 10.1016/j.jmaa.2015.07.025
|
| [10] |
Y. Zhao, L. You, D. Burkow, S. Yuan, Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dyn., 95 (2019), 1529–1548. https://doi.org/10.1007/s11071-018-4642-y doi: 10.1007/s11071-018-4642-y
|
| [11] |
N. Tuerxun, Z. Teng, Global dynamics in stochastic n-species food chain systems with white noise and Lévy jumps, Math. Methods Appl. Sci., 45 (2022), 5184–5214. https://doi.org/10.1002/mma.8101 doi: 10.1002/mma.8101
|
| [12] |
Q. Yang, X. Zhang, D. Jiang, Dynamical behaviors of a stochastic food chain system with Ornstein-Uhlenbeck process, J. Nonlinear Sci., 32 (2022), 34. https://doi.org/10.1007/s00332-022-09796-8 doi: 10.1007/s00332-022-09796-8
|
| [13] |
X. Yu, S. Yuan, T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci., 59 (2018), 359–374. https://doi.org/10.1016/j.cnsns.2017.11.028 doi: 10.1016/j.cnsns.2017.11.028
|
| [14] |
M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal., 28 (2018), 87–104. https://doi.org/10.1016/j.nahs.2017.10.004 doi: 10.1016/j.nahs.2017.10.004
|
| [15] |
M. Liu, Y. Zhu, Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps, Nonlinear Anal., 30 (2018), 225–239. https://doi.org/10.1016/j.nahs.2018.05.002 doi: 10.1016/j.nahs.2018.05.002
|
| [16] |
J. Bao, C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363–375. https://doi.org/10.1016/j.jmaa.2012.02.043 doi: 10.1016/j.jmaa.2012.02.043
|
| [17] |
M. Liu, K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078
|
| [18] |
Y. Zhao, S. Yuan, Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment, Phys. A, 477 (2017), 20–33. https://doi.org/10.1016/j.physa.2017.02.019 doi: 10.1016/j.physa.2017.02.019
|
| [19] |
Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stochastic mutualism model with Lévy jumps, Commun. Nonlinear Sci., 43 (2017), 78–90. https://doi.org/10.1016/j.cnsns.2016.05.003 doi: 10.1016/j.cnsns.2016.05.003
|
| [20] |
M. Liu, Dynamics of a stochastic regime-switching predator-prey model with modified Leslie-Gower Holling-type II schemes and prey harvesting, Nonlinear Dyn., 96 (2019), 417–442. https://doi.org/10.1007/s11071-019-04797-x doi: 10.1007/s11071-019-04797-x
|
| [21] |
Q. Han, D. Jiang, C. Ji, Analysis of a delayed stochastic predator-prey model in a polluted environment, Appl. Math. Model., 38 (2014), 3067–3080. https://doi.org/10.1016/j.apm.2013.11.014 doi: 10.1016/j.apm.2013.11.014
|
| [22] |
Q. Liu, Q. Chen, Analysis of a stochastic delay predator-prey system with jumps in a polluted environment, Appl. Math. Comput., 242 (2014), 90–100. https://doi.org/10.1016/j.amc.2014.05.033 doi: 10.1016/j.amc.2014.05.033
|
| [23] |
H. Qiu, W. Deng, Optimal harvesting of a stochastic delay logistic model with Lévy jumps, J. Phys. A, 49 (2016), 405601. https://doi.org/10.1088/1751-8113/49/40/405601 doi: 10.1088/1751-8113/49/40/405601
|
| [24] |
M. Liu, C. Bai, Optimal harvesting of a stochastic mutualism model with Lévy jumps, Appl. Math. Comput., 276 (2016), 301–309. https://doi.org/10.1016/j.amc.2015.11.089 doi: 10.1016/j.amc.2015.11.089
|
| [25] |
M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal., 28 (2018), 87–104. https://doi.org/10.1016/j.nahs.2017.10.004 doi: 10.1016/j.nahs.2017.10.004
|
| [26] |
S. K. Mandal, S. Poria, A study of Michaelis-Menten type harvesting effects on a population in stochastic environment, Phys. A, 611 (2023), 128469. https://doi.org/10.1016/j.physa.2023.128469 doi: 10.1016/j.physa.2023.128469
|
| [27] |
S. Wang, L. Dong, Stochastic dynamics of a hybrid delay food chain model with harvesting and jumps in a polluted environment, Methodol. Comput. Appl., 25 (2023), 94. https://doi.org/10.1007/s11009-023-10064-9 doi: 10.1007/s11009-023-10064-9
|
| [28] |
J. Yu, M. Liu, Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps, Phys. A, 482 (2017), 14–28. https://doi.org/10.1016/j.physa.2017.04.067 doi: 10.1016/j.physa.2017.04.067
|
| [29] |
M. Liu, J. Yu, P. Mandal, Dynamics of a stochastic delay competitive model with harvesting and Markovian switching, Appl. Math. Comput., 337 (2018), 335–349. https://doi.org/10.1016/j.amc.2018.03.044 doi: 10.1016/j.amc.2018.03.044
|
| [30] |
Y. Deng, M. Liu, Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations, Appl. Math. Model., 78 (2020), 482–504. https://doi.org/10.1016/j.apm.2019.10.010 doi: 10.1016/j.apm.2019.10.010
|
| [31] |
M. Liu, C. Bai, On a stochastic delayed predator-prey model with Lévy jumps, Appl. Math. Comput., 228 (2014), 563–570. https://doi.org/10.1016/j.amc.2013.12.026 doi: 10.1016/j.amc.2013.12.026
|
| [32] |
N. Tuerxun, Z. Teng, Global dynamics in stochastic n-species food chain systems with white noise and Lévy jumps, Math. Methods Appl. Sci., 45 (2022), 5184–5214. https://doi.org/10.1002/mma.8101 doi: 10.1002/mma.8101
|
| [33] |
M. Liu, K. Wang, Survival analysis of stochastic single-species population models in polluted environments, Ecol. Model., 220 (2009), 1347–1357. https://doi.org/10.1016/j.ecolmodel.2009.03.001 doi: 10.1016/j.ecolmodel.2009.03.001
|
| [34] |
S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic logistic model with S-type distributed time delay, J. Differ. Equations Appl., 23 (2017), 618–632. https://doi.org/10.1080/10236198.2016.1269761 doi: 10.1080/10236198.2016.1269761
|
| [35] |
M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969–2012. https://doi.org/10.1007/s11538-010-9569-5 doi: 10.1007/s11538-010-9569-5
|
| [36] |
M. Kinnally, R. Williams, On existence and uniqueness of stationary distributions for stochastic delay differential equations with positivity constraints, Electron. J. Probab., 15 (2010), 409–451. https://doi.org/10.1214/ejp.v15-756 doi: 10.1214/ejp.v15-756
|
| [37] |
M. Hairer, J. C. Mattingly, M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149 (2011), 223–259. https://doi.org/10.1007/s00440-009-0250-6 doi: 10.1007/s00440-009-0250-6
|
| [38] | G. Prato, J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press, 1996. https://doi.org/10.1017/CBO9780511662829 |