In this work, we define an extension of the k-Wright (-Gauss) hypergeometric matrix function and obtain certain properties of this function. Further, we present this function to achieve the solution of the fractional kinetic equations.
Citation: Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla. Solution of fractional kinetic equations involving extended -Gauss hypergeometric matrix functions[J]. AIMS Mathematics, 2022, 7(8): 14474-14491. doi: 10.3934/math.2022798
[1] | Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089 |
[2] | Qian Ding, Jian Liu, Zhiming Guo . Dynamics of a malaria infection model with time delay. Mathematical Biosciences and Engineering, 2019, 16(5): 4885-4907. doi: 10.3934/mbe.2019246 |
[3] | Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014 |
[4] | Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111 |
[5] | Yuting Ding, Gaoyang Liu, Yong An . Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion. Mathematical Biosciences and Engineering, 2022, 19(2): 1154-1173. doi: 10.3934/mbe.2022053 |
[6] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[7] | Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep . Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188 |
[8] | Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130 |
[9] | Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242 |
[10] | Guangxun Sun, Binxiang Dai . Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Mathematical Biosciences and Engineering, 2020, 17(4): 3520-3552. doi: 10.3934/mbe.2020199 |
In this work, we define an extension of the k-Wright (-Gauss) hypergeometric matrix function and obtain certain properties of this function. Further, we present this function to achieve the solution of the fractional kinetic equations.
[1] | P. Agarwal, R. P. Agarwal, M. Ruzhansky, Special functions and analysis of differential equations, New York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9780429320026 |
[2] |
N. Kaiblinger, Product of two hypergeometric functions with power arguments, J. Math. Anal. Appl., 479 (2019), 2236–2255. https://doi.org/10.1016/j.jmaa.2019.07.053 doi: 10.1016/j.jmaa.2019.07.053
![]() |
[3] |
M. Hidan, S. M. Boulaaras, B. Cherif, M. Abdalla, Further results on the -analogue of hypergeometric functions associated with fractional calculus operators, Math. Probl. Eng., 2021 (2021), 1–10. https://doi.org/10.1155/2021/5535962 doi: 10.1155/2021/5535962
![]() |
[4] |
T. H. Zhao, M. K. Wang, G. J. Hai, Y. M. Chu, Landen inequalities for Gaussian hypergeometric function, RACSAM, 116 (2022), 1–23. https://doi.org/10.1007/s13398-021-01197-y doi: 10.1007/s13398-021-01197-y
![]() |
[5] |
T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math., 5 (2020), 6479–6495. https://doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
![]() |
[6] |
T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 1–15. https://doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y
![]() |
[7] |
N. Virchenko, S. L. Kalla, A. Al-Zamel, Some results on a generalized hypergeometric function, Integr. Trans. Spec. Funct., 12 (2001), 89–100. https://doi.org/10.1080/10652460108819336 doi: 10.1080/10652460108819336
![]() |
[8] |
N. Khan, T. Usman, M. Aman, S. Al-Omari, S. Araci, Computation of certain integral formulas involving generalized Wright function, Adv. Differ. Equ., 2020 (2020), 1–10. https://doi.org/10.1186/s13662-020-02948-8 doi: 10.1186/s13662-020-02948-8
![]() |
[9] |
A. Ghaffar, A. Saif, M. Iqbal, M. Rizwan, Two classes of integrals involving extended Wright type generalized hypergeometric function, Commun. Math. Appl., 10 (2019), 599–606. https://doi.org/10.26713/cma.v10i3.1190 doi: 10.26713/cma.v10i3.1190
![]() |
[10] |
S. B. Rao, J. C. Prajapati, A. D. Patel, A. K. Shukla, Some properties of Wright-type generalized hypergeometric function via fractional calculus, Adv. Differ. Equ., 2014 (2014), 1–11. https://doi.org/10.1186/1687-1847-2014-119 doi: 10.1186/1687-1847-2014-119
![]() |
[11] |
N. U. Khan, T. Usman, M. Aman, Some properties concerning the analysis of generalized Wright function, J. Comput. Appl. Math., 376 (2020), 112840. https://doi.org/10.1016/j.cam.2020.112840 doi: 10.1016/j.cam.2020.112840
![]() |
[12] |
R. K. Parmar, Extended -hypergeomtric functions and associated properties, C. R. Math., 353 (2015), 421–426. https://doi.org/10.1016/j.crma.2015.01.016 doi: 10.1016/j.crma.2015.01.016
![]() |
[13] | R. K. Gupta, B. S. Shaktawat, D. Kumar, Some results associted with extended -Gauss hypergeomtric functions, Ganita Sandesh, 28 (2014), 55–60. |
[14] |
L. Jódar, J. C. Cortés, Some properties of Gamma and Beta matrix functions, Appl. Math. Lett., 11 (1998), 89–93. https://doi.org/10.1016/S0893-9659(97)00139-0 doi: 10.1016/S0893-9659(97)00139-0
![]() |
[15] |
L. Jódar, J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math., 99 (1998), 205–217. https://doi.org/10.1016/S0377-0427(98)00158-7 doi: 10.1016/S0377-0427(98)00158-7
![]() |
[16] |
M. Abdalla, Special matrix functions: Characteristics, achievements and future directions, Linear Multilinear Algebra, 68 (2020), 1–28. https://doi.org/10.1080/03081087.2018.1497585 doi: 10.1080/03081087.2018.1497585
![]() |
[17] | S. Mubeen, G. Rahman, M. Arshad, k-gamma, k-beta matrix functions and their properties, J. Math. Comput. Sci., 5 (2015), 647–657. |
[18] | G. Rahman, A. Ghaffar, S. D. Purohit, S. Mubeen, M. Arshad, On the hypergeomtric matrix -functions, Bull. Math. Anal. Appl., 8 (2016), 98–111. |
[19] |
G. S. Khammash, P. Agarwal, J. Choi, Extended -gamma and -beta functions of matrix arguments, Mathematics, 8 (2020), 1–13. https://doi.org/10.3390/math8101715 doi: 10.3390/math8101715
![]() |
[20] | A. Bakhet, F. L. He, M. M. Yu, On the matrix version of extended Bessel functions and its application to matrix differential equations, Linear Multilinear Algebra, 2021. https://doi.org/10.1080/03081087.2021.1923629 |
[21] |
M. Abdalla, S. A. Idris, I. Mekawy, Some results on the extended hypergeometric matrix functions and related functions, J. Math., 2021 (2021), 1–12. https://doi.org/10.1155/2021/2046726 doi: 10.1155/2021/2046726
![]() |
[22] |
M. Abdalla, A. Bakhet, Extended Gauss hypergeometric matrix functions, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 1465–1470. https://doi.org/10.1007/s40995-017-0183-3 doi: 10.1007/s40995-017-0183-3
![]() |
[23] |
F. L. He, A. Bakhet, M. Abdalla, M. Hidan, On the extended hypergeometric matrix functions and their applications for the derivatives of the extended Jacobi matrix polynomial, Math. Probl. Eng., 2020 (2020), 1–8. https://doi.org/10.1155/2020/4268361 doi: 10.1155/2020/4268361
![]() |
[24] | M. Akel, A. Bakhet, M. Abdalla, F. L. He, On degenerate gamma matrix functions and related functions, Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2022.2040942 |
[25] | M. Abdalla, H. Abd-Elmageed, M. Abul-Ez, M. Zayed, Further investigations on the two variables second Appell hypergeometric matrix function, Quaest. Math., 2022. https://doi.org/10.2989/16073606.2022.2034680 |
[26] |
R. Dwivedi, V. Sahai, Lie algebras of matrix difference differential operators and special matrix functions, Adv. Appl. Math., 122 (2021), 102109. https://doi.org/10.1016/j.aam.2020.102109 doi: 10.1016/j.aam.2020.102109
![]() |
[27] |
M. Hidan, A. Bakhet, H. Abd-Elmageed, M. Abdalla, Matrix-valued hypergeometric Appell-type polynomials, Electron. Res. Arch., 30 (2022), 2964–2980. https://doi.org/10.3934/era.2022150 doi: 10.3934/era.2022150
![]() |
[28] |
A. Verma, J. Younis, H. Aydi, On the Kampé de Fériet hypergeometric matrix function, Math. Probl. Eng., 2021 (2021), 1–11. https://doi.org/10.1155/2021/9926176 doi: 10.1155/2021/9926176
![]() |
[29] |
A. Bakhet, Y. Jiao, F. L. He, On the Wright hypergeometric matrix functions and their fractional calculus, Integr. Trans. Spec. Funct., 30 (2019), 138–156. https://doi.org/10.1080/10652469.2018.1543669 doi: 10.1080/10652469.2018.1543669
![]() |
[30] |
M. Abdalla, Fractional operators for the Wright hypergeometric matrix functions, Adv. Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.1186/s13662-020-02704-y doi: 10.1186/s13662-020-02704-y
![]() |
[31] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer -symbol, Divulg. Mat., 15 (2007), 179–192. |
[32] | H. Abd-Elmageed, M. Hosny, S. Boulaaras, Results on the -analogue of hypergeometric matrix functions and -fractional calculus, Fractals, 2022, In press. |
[33] | M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, New York: Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420036046 |
[34] | S. Naz, M. N. Naeem, On the generalization of -fractional Hilfer-Katugampola derivative with Cauchy problem, Turk. J. Math., 45 (2021), 110–124. |
[35] |
M. Abdalla, M. Hidan, S. M. Boulaaras, B. Cherif, Investigation of extended -hypergeometric functions and associated fractional integrals, Math. Probl. Eng., 2021 (2021), 1–11. https://doi.org/10.1155/2021/9924265 doi: 10.1155/2021/9924265
![]() |
[36] |
D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar, Certain -fractional calculus operators and image formulas of -Struve function, AIMS Math., 5 (2020), 1706–1719. https://doi.org/10.3934/math.2020115 doi: 10.3934/math.2020115
![]() |
[37] |
R. Yilmazer, K. Ali, Discrete fractional solutions to the -hypergeometric differential equation, Math. Methods Appl. Sci., 44 (2020), 7614–7621. https://doi.org/10.1002/mma.6460 doi: 10.1002/mma.6460
![]() |
[38] |
R. K. Saxena, A. M. Mathai, H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci., 282 (2002), 281–287. https://doi.org/10.1023/A:1021175108964 doi: 10.1023/A:1021175108964
![]() |
[39] |
R. K. Saxena, A. M. Mathai, H. J. Haubold, On generalized fractional kinetic equations, Phys. A, 344 (2004), 657–664. https://doi.org/10.1016/j.physa.2004.06.048 doi: 10.1016/j.physa.2004.06.048
![]() |
[40] |
M. Samraiz, M. Umer, A. Kashuri, T. Abdeljawad, S. Iqbal, N. Mlaiki, On weighted -Riemann-Liouville fractional operators and solution of fractional kinetic equation, Fractal Fract., 5 (2021), 1–18. https://doi.org/10.3390/fractalfract5030118 doi: 10.3390/fractalfract5030118
![]() |
[41] |
M. Abdalla, M. Akel, Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6060305 doi: 10.3390/fractalfract6060305
![]() |
[42] |
P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand, G. Singh, Fractional kinetic equations involving generalized -Bessel function via Sumudu transform, Alex. Eng. J., 57 (2018), 1937–1942. https://doi.org/10.1016/j.aej.2017.03.046 doi: 10.1016/j.aej.2017.03.046
![]() |
[43] |
K. S. Nisar, A. Shaikh, G. Rahman, D. Kumar, Solution of fractional kinetic equations involving class of functions and Sumudu transform, Adv. Differ. Equ., 2020 (2020), 1–11. https://doi.org/10.1186/s13662-020-2513-6 doi: 10.1186/s13662-020-2513-6
![]() |
[44] |
R. Garrappa, M. Popolizio, Computing the matrix Mittag-Leffler function with applications to fractional calculus, J. Sci. Comput., 77 (2018), 129–153. https://doi.org/10.1007/s10915-018-0699-5 doi: 10.1007/s10915-018-0699-5
![]() |
[45] |
A. Sadeghi, J. R. Cardoso, Some notes on properties of the matrix Mittag-Leffler function, Appl. Math. Comput., 338 (2018), 733–738. https://doi.org/10.1016/j.amc.2018.06.037 doi: 10.1016/j.amc.2018.06.037
![]() |
[46] |
M. Hidan, M. Akel, S. M. Boulaaras, M. Abdalla, On behavior Laplace integral operators with generalized Bessel matrix polynomials and related functions, J. Funct. Spaces, 2021 (2021), 1–10. https://doi.org/10.1155/2021/9967855 doi: 10.1155/2021/9967855
![]() |
1. | Fabien Crauste, 2009, Chapter 8, 978-3-642-02328-6, 263, 10.1007/978-3-642-02329-3_8 | |
2. | D. Efimov, W. Perruquetti, J.-P. Richard, Development of Homogeneity Concept for Time-Delay Systems, 2014, 52, 0363-0129, 1547, 10.1137/130908750 | |
3. | F. Crauste, Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch, 2009, 4, 0973-5348, 28, 10.1051/mmnp/20094202 | |
4. | Chi Jin, Keqin Gu, Silviu-Iulian Niculescu, Islam Boussaada, Stability Analysis of Systems With Delay-Dependent Coefficients: An Overview, 2018, 6, 2169-3536, 27392, 10.1109/ACCESS.2018.2828871 | |
5. | Chi Jin, Islam Boussaada, Silviu-Iulian Niculescu, Keqin Gu, 2017, An overview of stability analysis of systems with delay dependent coefficients, 978-1-5386-3842-2, 430, 10.1109/ICSTCC.2017.8107072 | |
6. | Mostafa Adimy, Fabien Crauste, Catherine Marquet, Asymptotic behavior and stability switch for a mature–immature model of cell differentiation, 2010, 11, 14681218, 2913, 10.1016/j.nonrwa.2009.11.001 | |
7. | Mostafa Adimy, Fabien Crauste, My Lhassan Hbid, Redouane Qesmi, Stability and Hopf Bifurcation for a Cell Population Model with State-Dependent Delay, 2010, 70, 0036-1399, 1611, 10.1137/080742713 | |
8. | L. Pujo-Menjouet, V. Volpert, Blood Cell Dynamics: Half of a Century of Modelling, 2016, 11, 0973-5348, 92, 10.1051/mmnp/201611106 | |
9. | Aying Wan, Junjie Wei, Bifurcation analysis in an approachable haematopoietic stem cells model, 2008, 345, 0022247X, 276, 10.1016/j.jmaa.2008.04.014 | |
10. | M. Adimy, F. Crauste, Delay Differential Equations and Autonomous Oscillations in Hematopoietic Stem Cell Dynamics Modeling, 2012, 7, 0973-5348, 1, 10.1051/mmnp/20127601 | |
11. | S. Q. Ma, S. J. Hogan, Bifurcation in an modified model of neutrophil cells with time delay, 2024, 0924-090X, 10.1007/s11071-024-09786-3 | |
12. | Chi Jin, Keqin Gu, Qian Ma, Silviu-Iulian Niculescu, Islam Boussaada, Stability analysis of systems with delay-dependent coefficients and commensurate delays, 2024, 0932-4194, 10.1007/s00498-024-00399-0 | |
13. | Suqi Ma, S. J. Hogan, Generalized Hopf Bifurcation in a Delay Model of Neutrophil Cells Model, 2024, 13, 2167-9479, 11, 10.4236/ijmnta.2024.132002 | |
14. | Ma Suqi, S. J. Hogan, Mohammad Safi Ullah, Bifurcation in a G0 Model of Hematological Stem Cells With Delay, 2024, 2024, 1085-3375, 10.1155/aaa/1419716 |