We study the existence of solutions to the cubic Schrödinger system
−Δui=m∑j=1βiju2jui+λiui in Ω, ui=0 on ∂Ω, i=1,…,m,
when Ω is a bounded domain in R4, λi are positive small numbers, βij are real numbers so that βii>0 and βij=βji, i≠j. We assemble the components ui in groups so that all the interaction forces βij among components of the same group are attractive, i.e., βij>0, while forces among components of different groups are repulsive or weakly attractive, i.e., βij<¯β for some ¯β small. We find solutions such that each component within a given group blows-up around the same point and the different groups blow-up around different points, as all the parameters λi's approach zero.
Citation: Simone Dovetta, Angela Pistoia. Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime[J]. Mathematics in Engineering, 2022, 4(4): 1-21. doi: 10.3934/mine.2022027
[1] | Pensiri Yosyingyong, Ratchada Viriyapong . Global dynamics of multiple delays within-host model for a hepatitis B virus infection of hepatocytes with immune response and drug therapy. Mathematical Biosciences and Engineering, 2023, 20(4): 7349-7386. doi: 10.3934/mbe.2023319 |
[2] | Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li . A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences and Engineering, 2015, 12(3): 431-449. doi: 10.3934/mbe.2015.12.431 |
[3] | Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu . A delayed HIV-1 model with virus waning term. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135 |
[4] | Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087 |
[5] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[6] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[7] | Cuicui Jiang, Kaifa Wang, Lijuan Song . Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1233-1246. doi: 10.3934/mbe.2017063 |
[8] | Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331 |
[9] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[10] | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538 |
We study the existence of solutions to the cubic Schrödinger system
−Δui=m∑j=1βiju2jui+λiui in Ω, ui=0 on ∂Ω, i=1,…,m,
when Ω is a bounded domain in R4, λi are positive small numbers, βij are real numbers so that βii>0 and βij=βji, i≠j. We assemble the components ui in groups so that all the interaction forces βij among components of the same group are attractive, i.e., βij>0, while forces among components of different groups are repulsive or weakly attractive, i.e., βij<¯β for some ¯β small. We find solutions such that each component within a given group blows-up around the same point and the different groups blow-up around different points, as all the parameters λi's approach zero.
[1] |
N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661. doi: 10.1103/PhysRevLett.82.2661
![]() |
[2] | T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573–598. |
[3] |
T. Bartsch, Bifurcation in a multicomponent system of nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 13 (2013), 37–50. doi: 10.1007/s11784-013-0109-4
![]() |
[4] |
G. Bianchi, H. Egnell, A note on the Sobolev inequality, J. Funct. Anal., 100 (1991), 18–24. doi: 10.1016/0022-1236(91)90099-Q
![]() |
[5] |
H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437–477. doi: 10.1002/cpa.3160360405
![]() |
[6] |
J. Byeon, O. Kwon, J. Seok, Positive vector solutions for nonlinear Schrödinger systems with strong interspecies attractive forces, J. Math. Pure. Appl., 143 (2020), 73–115. doi: 10.1016/j.matpur.2020.09.008
![]() |
[7] |
J. Byeon, Y. Sato, Z. Q. Wang, Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrödinger systems, J. Math. Pure. Appl., 106 (2016), 477–511. doi: 10.1016/j.matpur.2016.03.001
![]() |
[8] | Z. Chen, C. S. Lin, Asymptotic behavior of least energy solutions for a critical elliptic system, Int. Math. Res. Not., 21 (2015), 11045–11082. |
[9] |
Z. Chen, W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012), 515–551. doi: 10.1007/s00205-012-0513-8
![]() |
[10] |
M. Clapp, A. Szulkin, A simple variational approach to weakly coupled competitive elliptic systems, Nonlinear Differ. Equ. Appl., 26 (2019), 26. doi: 10.1007/s00030-019-0572-8
![]() |
[11] |
Y. Guo, S. Luo, W. Zuo, The existence, uniqueness and nonexistence of the ground state to the N-coupled Schrödinger systems in Rn (n⩽4), Nonlinearity, 31 (2018), 314–339. doi: 10.1088/1361-6544/aa8ca9
![]() |
[12] | Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159–174. |
[13] |
A. M. Micheletti, A. Pistoia, Non degeneracy of critical points of the Robin function with respect to deformations of the domain, Potential Anal., 40 (2014), 103–116. doi: 10.1007/s11118-013-9340-2
![]() |
[14] | M. Musso, A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana U. Math. J., 51 (2002), 541–579. |
[15] |
B. Noris, H. Tavares, S. Terracini, G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Commun. Pure Appl. Math., 63 (2010), 267–302. doi: 10.1002/cpa.20309
![]() |
[16] |
A. Pistoia, N. Soave, On Coron's problem for weakly coupled elliptic systems, P. Lond. Math. Soc., 116 (2018), 33–67. doi: 10.1112/plms.12073
![]() |
[17] |
A. Pistoia, H. Tavares, Spiked solutions for Schrödinger systems with Sobolev critical expnent: the cases of competitive and weakly cooperative interactions, J. Fixed Point Theory Appl., 19 (2017), 407–446. doi: 10.1007/s11784-016-0360-6
![]() |
[18] |
O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1–52. doi: 10.1016/0022-1236(90)90002-3
![]() |
[19] |
Y. Sato, Z. Q. Wang, Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings, Adv. Nonlinear Stud., 15 (2015), 1–22. doi: 10.1515/ans-2015-0101
![]() |
[20] |
Y. Sato, Z. Q. Wang, Multiple positive solutions for Schrödinger systems with mixed couplings, Calc. Var., 54 (2015), 1373–1392. doi: 10.1007/s00526-015-0828-z
![]() |
[21] |
N. Soave, On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var., 53 (2015), 689–718. doi: 10.1007/s00526-014-0764-3
![]() |
[22] |
N. Soave, H. Tavares, New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, J. Differ. Equations, 261 (2016), 505–537. doi: 10.1016/j.jde.2016.03.015
![]() |
[23] |
G. Talenti, Best constant in Sobolev inequality, Annali di Matematica, 110 (1976), 353–372. doi: 10.1007/BF02418013
![]() |
[24] |
H. Tavares, S. You, Existence of least energy positive solutions to Schrödinger systems with mixed competition and cooperation terms: the critical case, Calc. Var., 59 (2020), 26. doi: 10.1007/s00526-019-1694-x
![]() |
[25] |
E. Timmermans, Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718–5721. doi: 10.1103/PhysRevLett.81.5718
![]() |
[26] |
J. Wei, Y. Wu, Ground states of nonlinear Schrödinger systems with mixed couplings, J. Math. Pure. Appl., 141 (2020), 50–88. doi: 10.1016/j.matpur.2020.07.012
![]() |