Using elementary methods, we count the quadratic residues of a prime number of the form
Citation: Jorge Garcia Villeda. A computable formula for the class number of the imaginary quadratic field $ \mathbb Q(\sqrt{-p}), \ p = 4n-1 $[J]. Electronic Research Archive, 2021, 29(6): 3853-3865. doi: 10.3934/era.2021065
Using elementary methods, we count the quadratic residues of a prime number of the form
| [1] |
H. Cohen, A Course in Computational Algebraic Number Theory, Volume 138 of Graduate Text in Mathematics, Springer-Verlag, New York, 1993. doi: 10.1007/978-3-662-02945-9
|
| [2] | L. E. Dickson, Introduction to the Theory of Numbers, Dover Publ. Inc., New York, 1957. |
| [3] |
P. G. L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Volume 1, Cambridge University Press, (2012), 313–342. doi: 10.1017/CBO9781139237338.023
|
| [4] | J. Garcia, Sum of quadratic-type residues modulus a prime $p = 4n-1$, work in progress. |
| [5] |
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 2004. doi: 10.1007/978-3-662-07001-7
|
| [6] | D. Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Volume XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., (1971), 415–440. |