Citation: Alaa. K. Khamis, Allal Bakali, A. A. El-Bary, Haitham. M. Atef. The effect of modified Ohm’s and Fourier’s laws in generalized magneto-thermo viscoelastic spherical region[J]. AIMS Materials Science, 2020, 7(4): 381-398. doi: 10.3934/matersci.2020.4.381
| [1] |
Biot MA (1956) Thermo elasticity and irreversible thermo-dynamics. J Appl Phys 27: 240-253. doi: 10.1063/1.1722351
|
| [2] | Lord HW, Shulman Y (1976) A generalized dynamical theory of thermo elasticity. J Mech Phys Solid 15: 299-309. |
| [3] |
Müller MM, Kaiser E, Bauer P, et al. (1976) Lipid composition of the rat kidney. Nephron 17: 41-50. doi: 10.1159/000180709
|
| [4] |
Green AE, Laws N (1972) On the entropy production inequality. Arch Ration Mech An 45: 47-53. doi: 10.1007/BF00253395
|
| [5] |
Green AE, Lindsay KA (1972) Thermo elasticity. J Elasticity 2: 1-7. doi: 10.1007/BF00045689
|
| [6] | Shuhubi E (1957) Thermo elastic solid, In: Eringen AC, Continuum Physics, New York: Academic Press. |
| [7] | Green AE, Naghdi PM (1991) A re-examination of the basic postulate of thermo-mechanics. P Roy Soc A-Math Phy 432: 171-194. |
| [8] |
Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elasticity 31: 189-208. doi: 10.1007/BF00044969
|
| [9] |
Green AE, Naghdi PM (1992) An unbounded heat wave in an elastic solid. J Therm Stresses 15: 253-264. doi: 10.1080/01495739208946136
|
| [10] | Illyushin AA, Pobedria BE (1970) Fundamentals of the mathematical theory of thermal viscoelasticity. |
| [11] |
Biot MA (1954) Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J Appl Phys 25: 1385-1391. doi: 10.1063/1.1721573
|
| [12] |
Biot MA (1955) Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys Rev 97: 1463-1469. doi: 10.1103/PhysRev.97.1463
|
| [13] | Morland LW, Lee EH (1960) Stress analysis for linear viscoelastic materials with temperature variation. J Rheol 4: 233-263. |
| [14] | Tanner RI (1988) Engineering Rheology, Oxford: Oxford University Press. |
| [15] |
Drozdov AD (1996) A constitutive model in thermoviscoelasticity. Mech Res Commun 23: 543-548. doi: 10.1016/0093-6413(96)00055-9
|
| [16] | Bland DR (1960) The Theory of Linear Viscoelasticity, Oxford: Pergamon Press. |
| [17] |
Lion A (1997) On the large deformation behavior of reinforced rubber at different temperatures. J Mech Phys Solids 45: 1805-1834. doi: 10.1016/S0022-5096(97)00028-8
|
| [18] |
Liao Z, Hossain M, Yao X, et al. (2020) Thermo-viscoelastic experimental characterization and numerical modelling of VHB polymer. Int J Nonlin Mech 118: 103263. doi: 10.1016/j.ijnonlinmec.2019.103263
|
| [19] |
Niyonzima I, Jiao Y, Fish J (2019) Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices. Comput Method Appl M 350: 511-534. doi: 10.1016/j.cma.2019.03.003
|
| [20] |
Mehnert M, Hossain M, Steinmann P (2017) Towards a thermo-magneto-mechanical coupling framework for magneto-rheological elastomers. Int J Solids Struct 128: 117-132. doi: 10.1016/j.ijsolstr.2017.08.022
|
| [21] |
Mehnert M, Hossain M, Steinmann P (2016) On nonlinear thermo-electro-elasticity. P Roy Soc A-Math Phys 472: 20160170. doi: 10.1098/rspa.2016.0170
|
| [22] |
Youssef HM, El-Bary AA, Elsibai KA (2014) Vibration of gold nano beam in context of two-temperature generalized thermoelasticity subjected to laser pulse. Lat Am J Solids Stru 11: 2460-2482. doi: 10.1590/S1679-78252014001300008
|
| [23] |
Ezzat MA, El-Bary AA (2014) Two-temperature theory of magneto-thermo-viscoelasticity with fractional derivative and integral orders heat transfer. J Electromagnet Wave 28: 1985-2004. doi: 10.1080/09205071.2014.953639
|
| [24] | Ezzat MA, El-Bary AA (2015) State space approach to two-dimensional magneto-thermoelasticity with fractional order heat transfer in a medium of perfect conductivity. Int J Appl Electrom 49: 607-625. |
| [25] |
Ismail MAH, Khamis AK, El-Bary AA, et al. (2017) Effect of rotation of generalized thermoelastic layer subjected to harmonic heat: state-space approach. Microsyst Technol 23: 3381-3388. doi: 10.1007/s00542-016-3137-3
|
| [26] |
Khamis AK, Ismail AH, Youssef HM, et al. (2017) Thermal shock problem of two-temperature generalized thermoelasticity without energy dissipation with rotation. Microsyst Technol 23: 4831-4839. doi: 10.1007/s00542-017-3279-y
|
| [27] |
Youssef HM, Elsibai KA, El-Bary AA (2017) Effect of the speed, the rotation and the magnetic field on the Q-factor of an axially clamped gold micro-beam. Meccanica 52: 1685-1694. doi: 10.1007/s11012-016-0498-8
|
| [28] |
Ezzat MA, El-Karamany AS, El-Bary AA (2017) Thermoelectric viscoelastic materials with memory-dependent derivative. Smart Struct Sys 19: 539-551. doi: 10.12989/sss.2017.19.5.539
|
| [29] |
El-Karamany AS, Ezzat MA, El-Bary AA (2018) Thermodiffusion with two time delays and Kernel functions. Math Mech Solids 23: 195-208. doi: 10.1177/1081286516676870
|
| [30] |
Ezzat MA, El-Bary AA (2018) Thermoelectric spherical shell with fractional order heat transfer. Microsyst Technol 24: 891-899. doi: 10.1007/s00542-017-3400-2
|
| [31] |
El-Bary AA, Atef H (2016) On effect of viscous fractional parameter on infinite thermo Viscoelastic medium with a spherical cavity. Journal of computational and theoretical. Nanoscience 13: 1-5. doi: 10.1166/jctn.2016.4099
|
| [32] |
El-Bary AA, Atef M (2016) Modified approach for stress strain equation in the linear Kelvin-Voigt solid based on fractional order. J Comput Theor Nanos 13: 1027-1036. doi: 10.1166/jctn.2016.4332
|
| [33] |
Amin MM, El-Bary A, Atef H (2018) Effect of viscous fractional parameter on generalized magneto thermo-viscoelastic thin slim strip exposed to moving heat source. Mater Focus 7: 814-823. doi: 10.1166/mat.2018.1591
|
| [34] |
Amin MM, El-Bary AA, Atef HM (2018) Modification of Kelvin-Voigt model in fractional order for thermoviscoelastic isotropic material. Mater Focus 7: 824-832. doi: 10.1166/mat.2018.1592
|
| [35] |
Sharma K, Kumar P (2013) Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids. J Therm Stresses 36: 94-111. doi: 10.1080/01495739.2012.720545
|