[1]
|
A. M. Wazwaz, A reliable treatment for mix Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 405-414.
|
[2]
|
F. Mirzaee, S. F. Hoseini, Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations, Appl. Math. Comput., 273 (2016), 637-644.
|
[3]
|
F. Mirzaee, E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modification of hat functions, Appl. Math. Comput., 280 (2016), 110-123.
|
[4]
|
P. M. A. Hasan, N. A. Sulaiman, Existence and Uniqueness of Solution for Linear Mixed Volterra-Fredholm Integral Equations in Banach Space, Am. J. Comput. Appl. Math., 9 (2019), 1-5.
|
[5]
|
L. Mei, Y. Lin, Simplified reproducing kernel method and convergence order for linear Volterra integral equations with variable coefficients, J. Comput. Appl. Math., 346 (2019), 390-398. doi: 10.1016/j.cam.2018.07.027
|
[6]
|
S. Micula, On some iterative numerical methods for mixed Volterra-Fredholm integral equations, Symmetry, 11 (2019), 1200.
|
[7]
|
S. Deniz S, N. Bildik, Optimal perturbation iteration method for Bratu-type problems, Journal of King Saud University - Science, 30 (2018), 91-99. doi: 10.1016/j.jksus.2016.09.001
|
[8]
|
K. Berrah, A. Aliouche, T. Oussaeif, Applications and theorem on common fixed point in complex valued b-metric space, AIMS Mathematics, 4 (2019), 1019-1033. doi: 10.3934/math.2019.3.1019
|
[9]
|
N. Bildik, S. Deniz, Solving the burgers' and regularized long wave equations using the new perturbation iteration technique, Numer. Meth. Part. D. E., 34 (2018), 1489-1501. doi: 10.1002/num.22214
|
[10]
|
J. Chen, M. He, Y. Huang, A fast multiscale Galerkin method for solving second order linear Fredholm integro-differential equation with Dirichlet boundary conditions, J. Comput. Appl. Math., 364 (2020), 112352.
|
[11]
|
R. Rabbani, R. Jamali, Solving nonlinear system of mixed Volterra- Fredholm integral equations by using variational iteration method, J. Math. Comput. Sci., 5 (2012), 280-287. doi: 10.22436/jmcs.05.04.05
|
[12]
|
M. Ghasemi, M. Fardi, R. K. Ghaziani, Solution of system of the mixed Volterra - Fredholm integral equations by an analytical method, Math. Comput. Model., 58 (2013), 1522-1530. doi: 10.1016/j.mcm.2013.06.006
|
[13]
|
A. Wazwaz, A First course in Integral Equations. Second Edition, Saint Xavier University, USA: World Scientific Publishing, 2015.
|
[14]
|
T. Abdeljawad, R. P. Agarwal, E. Karapınar, et al. Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686.
|
[15]
|
E. Hesameddini and M. Shahbazi, Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstain Block pulse functions, J. Comput. Appl. Math., 315 (2017), 182-194. doi: 10.1016/j.cam.2016.11.004
|
[16]
|
A. Borhanifar, K. Sadri, Shifted Jacobi collocation method based on operational matrix for solving the systems of Fredholm and Volterra integral equations, Math. Comput. Appl., 20 (2015), 76-93.
|
[17]
|
R. V. Kakde, S. S. Biradar, S. S. Hiremath, Solution of Differential and Integral Equations Using Fixed Point Theory, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3 (2014), 1656-1659.
|
[18]
|
K. Maleknejad, P. Torabi, R. Mollapourasl, Fixed point method for solving nonlinear quadratic Volterra integral equations, Comput. Math. Appl., 62 (2011), 2555-2566. doi: 10.1016/j.camwa.2011.07.055
|
[19]
|
K. Maleknejad, P. Torabi, Application of fixed point method for solving nonlinear Volterra-Hammerstein integral, U. P. B. Sci. Bull., Series A: App. Math. Phy., 74 (2012), 45-56.
|
[20]
|
A. J. Jerri, Introduction to Integral Equation with Application. Marcel Dekker, New York and Basel, 1985.
|